Exponential decay for the linear Zakharov-Kuznetsov equation without critical domain restrictions

被引:4
作者
Doronin, G. G. [1 ]
Larkin, N. A. [1 ]
机构
[1] Univ Estadual Maringa, Dept Matemat, BR-87020900 Maringa, Parana, Brazil
关键词
ZK equation; Stabilization; BOUNDARY-VALUE PROBLEM; WELL-POSEDNESS;
D O I
10.1016/j.aml.2013.08.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Initial-boundary-value problems for the linear Zakharov-Kuznetsov equation posed on bounded rectangles are considered. The spectral properties of a stationary operator are studied in order to show that the evolution problem posed on a bounded rectangle has no critical restrictions on its size. The exponential decay of regular solutions is established. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:6 / 10
页数:5
相关论文
共 24 条
[1]  
[Anonymous], 2011, ELECTRON J DIFFER EQ
[2]  
Bers L., 1964, Partial Differential Equations (Lectures in Applied Mathematics vol III), pp xiii+343
[3]   A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation posed on a finite domain [J].
Bona, JL ;
Sun, SM ;
Zhang, BY .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (7-8) :1391-1436
[4]   INITIAL-VALUE PROBLEM FOR KORTEWEG-DEVRIES EQUATION [J].
BONA, JL ;
SMITH, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1975, 278 (1287) :555-601
[5]  
Doronin G.G., 2012, ARXIVSUBMIT0558971MA
[6]  
Faminskii AV, 2010, ELECTRON J DIFFER EQ
[7]  
Faminskii AV, 1995, DIFF EQUAT+, V31, P1002
[8]  
Faminskii AV., 2008, Electron. J. Differ. Equ, V127, P1
[9]   A note on the 2D generalized Zakharov-Kuznetsov equation: Local, global, and scattering results [J].
Farah, Luiz G. ;
Linares, Felipe ;
Pastor, Ademir .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (08) :2558-2571
[10]  
Kato T., 1983, Adv. Math. Suppl. Stud. Stud. Appl. Math., V8, P93