Observation of quantum state collapse and revival due to the single-photon Kerr effect

被引:430
作者
Kirchmair, Gerhard [1 ,2 ]
Vlastakis, Brian [1 ,2 ]
Leghtas, Zaki [3 ]
Nigg, Simon E. [1 ,2 ]
Paik, Hanhee [1 ,2 ]
Ginossar, Eran [4 ,5 ]
Mirrahimi, Mazyar [1 ,2 ,3 ]
Frupzio, Luigi [1 ,2 ]
Girvin, S. M. [1 ,2 ]
Schoelkopf, R. J. [1 ,2 ]
机构
[1] Yale Univ, Dept Phys, New Haven, CT 06511 USA
[2] Yale Univ, Dept Appl Phys, New Haven, CT 06511 USA
[3] INRIA Paris Rocquencourt, F-78153 Le Chesnay, France
[4] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England
[5] Univ Surrey, Adv Technol Inst, Guildford GU2 7XH, Surrey, England
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
TRAPPED ATOM; GENERATION; CIRCUIT; OPTICS; CAVITY; FIELD;
D O I
10.1038/nature11902
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
To create and manipulate non-classical states of light for quantum information protocols, a strong, nonlinear interaction at the single-photon level is required. One approach to the generation of suitable interactions is to couple photons to atoms, as in the strong coupling regime of cavity quantum electrodynamic systems(1,2). In these systems, however, the quantum state of the light is only indirectly controlled by manipulating the atoms(3). A direct photon-photon interaction occurs in so-called Kerr media, which typically induce only weak nonlinearity at the cost of significant loss. So far, it has not been possible to reach the single-photon Kerr regime, in which the interaction strength between individual photons exceeds the loss rate. Here, using a three-dimensional circuit quantum electrodynamic architecture(4), we engineer an artificial Kerr medium that enters this regime and allows the observation, of new quantum effects. We realize a gedanken experiment(5) in which the collapse and revival of a coherent state can be observed. This time evolution is a consequence of the quantization of the light field in the cavity and the nonlinear interaction between individual photons. During the evolution, non-classical superpositions of coherent states (that is, multi-component 'Schrodinger cat' states) are formed. We visualize this evolution by measuring the Husimi Q function and confirm the non-classical properties of these transient states by cavity state tomography. The ability to create and manipulate superpositions of coherent states in such a high-quality-factor photon mode opens perspectives for combining the physics of continuous variables(6) with superconducting circuits. The single-photon Kerr effect could be used in quantum non-demolition measurement of photons(7), single-photon generation(8), autonomous quantum feedback schemes(9) and quantum logic operations(10).
引用
收藏
页码:205 / 209
页数:5
相关论文
共 30 条
[1]   Phase-preserving amplification near the quantum limit with a Josephson ring modulator [J].
Bergeal, N. ;
Schackert, F. ;
Metcalfe, M. ;
Vijay, R. ;
Manucharyan, V. E. ;
Frunzio, L. ;
Prober, D. E. ;
Schoelkopf, R. J. ;
Girvin, S. M. ;
Devoret, M. H. .
NATURE, 2010, 465 (7294) :64-U70
[2]   Josephson-junction-embedded transmission-line resonators: From Kerr medium to in-line transmon [J].
Bourassa, J. ;
Beaudoin, F. ;
Gambetta, Jay M. ;
Blais, A. .
PHYSICAL REVIEW A, 2012, 86 (01)
[3]   Quantum information with continuous variables [J].
Braunstein, SL ;
van Loock, P .
REVIEWS OF MODERN PHYSICS, 2005, 77 (02) :513-577
[4]   Reconstruction of non-classical cavity field states with snapshots of their decoherence [J].
Deleglise, Samuel ;
Dotsenko, Igor ;
Sayrin, Clement ;
Bernu, Julien ;
Brune, Michel ;
Raimond, Jean-Michel ;
Haroche, Serge .
NATURE, 2008, 455 (7212) :510-514
[5]   Characterizing quantum microwave radiation and its entanglement with superconducting qubits using linear detectors [J].
Eichler, C. ;
Bozyigit, D. ;
Wallraff, A. .
PHYSICAL REVIEW A, 2012, 86 (03)
[6]   SUBPICOSECOND PULSE GENERATION USING OPTICAL KERR EFFECT [J].
FISHER, RA ;
KELLEY, PL ;
GUSTAFSON, TK .
APPLIED PHYSICS LETTERS, 1969, 14 (04) :140-+
[7]   GENERATION OF OPTICAL HARMONICS [J].
FRANKEN, PA ;
WEINREICH, G ;
PETERS, CW ;
HILL, AE .
PHYSICAL REVIEW LETTERS, 1961, 7 (04) :118-&
[8]   Quantum non-demolition measurements in optics [J].
Grangier, P ;
Levenson, JA ;
Poizat, JP .
NATURE, 1998, 396 (6711) :537-542
[9]   Collapse and revival of the matter wave field of a Bose-Einstein condensate [J].
Greiner, M ;
Mandel, O ;
Hänsch, TW ;
Bloch, I .
NATURE, 2002, 419 (6902) :51-54
[10]  
Haroche S., 2006, Exploring the Quantum: Atoms, Cavities, and Photons