Existence of three positive solutions to a second-order boundary value problem on a measure chain

被引:35
作者
Avery, RI
Anderson, DR [1 ]
机构
[1] Concordia Coll, Dept Math & Comp Sci, Moorhead, MN 56562 USA
[2] Dakota State Univ, Coll Nat Sci, Madison, SD 57042 USA
关键词
measure chains; boundary value problem;
D O I
10.1016/S0377-0427(01)00436-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Growth conditions are imposed on f such that the boundary value problem -x(DeltaDelta)(t) = f(x(a)(t)), tis an element of [t(1), t(2)], lambdax(t(1)) - etax(Delta)(t(1)) = 0 and mux(sigma(t(2))) + deltax(Delta)(sigma(t(2))) = 0, where t(1) < t(2) from a measure chain T, has at least three positive solutions by way of the five functionals fixed point theorem. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:65 / 73
页数:9
相关论文
共 26 条
[1]  
Agarwal R. P., 1999, RESULTS MATH, V35, P3, DOI [DOI 10.1007/BF03322019, 10.1007/BF03322019]
[2]  
Agarwal R.P., 1999, POSITIVE SOLUTIONS D
[3]   Three positive solutions to a discrete focal boundary value problem [J].
Anderson, D ;
Avery, R ;
Peterson, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 88 (01) :103-118
[4]   Multiple positive solutions to a third-order discrete focal boundary value problem [J].
Anderson, D ;
Avery, RI .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 42 (3-5) :333-340
[5]  
[Anonymous], 1998, MSR HOT LINE
[6]  
[Anonymous], DIFFER EQU DYN SYST
[7]  
AULBACH B, 1990, NONLINEAR DYNAMICS Q, V59
[8]  
Avery R. I., 1998, PANAMER MATH J, V8, P39
[9]  
AVERY R. I., 1998, Panam. Math. J., V8, P1
[10]  
AVERY RI, 1997, MULTIPLE POSITIVE SO