Fertilizer nitrogen rate and the response of weeds to herbicides

被引:42
作者
Cathcart, RJ
Chandler, K
Swanton, CJ [1 ]
机构
[1] Univ Guelph, Dept Plant Agr, Guelph, ON N1G 2W1, Canada
[2] Univ Guelph, Dept Plant Agr, Guelph, ON N1G 2W1, Canada
关键词
community structure; competition; herbicide sensitivity; log-logistic analysis; soil fertility;
D O I
10.1614/WS-03-049R
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Differences in plant community composition have been attributed to abiotic field characteristics, crop type, localized predation, farm implement traffic, and natural dispersal mechanisms. Nitrogen (N) fertilizer rates and herbicides also are known to influence weed community structure, although their interaction has not been reported in the literature. A growth room experiment was conducted using three weed species (green foxtail, redroot pigweed, and velvetleaf) and five herbicides (nicosulfuron, atrazine, glufosinate, glyphosate, and mesotrione) differing in their mode of action and efficacy to the selected species. The experiment was conducted in growth chambers with two levels of N fertilization (low: 0.7 mM N and high: 7.7 mM N). Weeds were grown to the two- to five-leaf stage (depending on species), treated with the appropriate herbicide, and harvested approximately 2 wk after treatment. The herbicide dose at which a 50% reduction in biomass occurred (GR(50)) was determined using log-logistic analysis. Herbicide susceptibility of the different weed species was influenced by N level. Green foxtail grown under low N required approximately six times the dose of nicosulfuron compared with plants grown under high N. Similarly, higher doses of nicosulfuron, glufosinate, mesotrione, and glyphosate were required to achieve a 50% reduction in redroot pigweed biomass grown under low N. In contrast, N did not influence the efficacy of mesotrione, glufosinate, or atrazine when applied to velvetleaf This indicated specificity among herbicide-species combinations. Differences in herbicide efficacy resulting from soil N levels may alter weed community structure and may potentially explain possible weed control failures on farm fields.
引用
收藏
页码:291 / 296
页数:6
相关论文
共 35 条
[1]   SOIL PROPERTIES AFFECTING THE DISTRIBUTION OF 37 WEED SPECIES IN DANISH FIELDS [J].
ANDREASEN, C ;
STREIBIG, JC ;
HAAS, H .
WEED RESEARCH, 1991, 31 (04) :181-187
[2]   RESPONSE OF THE ANNUAL ABUTILON-THEOPHRASTI MEDIC - (MALVACEAE) TO TIMING OF NUTRIENT AVAILABILITY [J].
BENNER, BL ;
BAZZAZ, FA .
AMERICAN JOURNAL OF BOTANY, 1985, 72 (02) :320-323
[3]  
Booth BD, 2002, WEED SCI, V50, P2, DOI 10.1614/0043-1745(2002)050[0002:AIATAT]2.0.CO
[4]  
2
[5]   INTEGRATED WEED MANAGEMENT AND WEED SPECIES-DIVERSITY [J].
CLEMENTS, DR ;
WEISE, SF ;
SWANTON, CJ .
PHYTOPROTECTION, 1994, 75 (01) :1-18
[6]  
COSTEA M, 2003, IN PRESS CAN J PLANT
[7]  
Cousens RD, 1997, PROC BRIGHTON CROP, P613
[8]  
DERKSEN DA, 1995, WEED RES, V35, P311, DOI 10.1111/j.1365-3180.1995.tb01794.x
[9]   EFFECT OF WATER-STRESS, NITROGEN, AND GIBBERELLIC-ACID ON FLUAZIFOP AND GLYPHOSATE ACTIVITY ON OATS (AVENA-SATIVA) [J].
DICKSON, RL ;
ANDREWS, M ;
FIELD, RJ ;
DICKSON, EL .
WEED SCIENCE, 1990, 38 (01) :54-61
[10]   THE INFLUENCE OF SOIL-MOISTURE ON THE FOLIAR ACTIVITY OF DICLOFOP [J].
DORTENZIO, WA ;
NORRIS, RF .
WEED SCIENCE, 1980, 28 (05) :534-539