Partial and unified crossed products are weak crossed products

被引:5
|
作者
Fdez Vilaboa, J. M. [1 ]
Gonzalez Rodriguez, R. [2 ]
Rodriguez Raposo, A. B. [3 ]
机构
[1] Univ Santiago de Compostela, Dept Alxebra, E-15771 Santiago De Compostela, Spain
[2] Univ Vigo, Dept Matematica Aplicada II, E-36310 Vigo, Spain
[3] Univ Corurna, Dept Matematicas, E-15071 La Coruna, Spain
来源
HOPF ALGEBRAS AND TENSOR CATEGORIES | 2013年 / 585卷
关键词
Unified crossed products; partial crossed products; weak crossed products;
D O I
10.1090/conm/585/11619
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In Vilaboa, Rodgriguez, and Raposo (2009) the notion of a weak crossed product of an algebra by an object, both living in a monoidal category was presented. Unified crossed products defined in Agore and Militaru (2011) and partial crossed products defined in Muniz et al. (2011) are crossed product structures defined for a Hopf algebra and another object. In this paper we prove that unified crossed products and partial crossed products are particular instances of weak crossed products.
引用
收藏
页码:261 / +
页数:3
相关论文
共 50 条
  • [11] Purely infinite partial crossed products
    Giordano, Thierry
    Sierakowski, Adam
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (09) : 5733 - 5764
  • [12] Partial Crossed Products and Goldie Rings
    Bemm, Laerte
    Cortes, Wagner
    Della Flora, Saradia
    Ferrero, Miguel
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (09) : 3705 - 3724
  • [13] DILATIONS OF SEMIGROUP CROSSED PRODUCTS AS CROSSED PRODUCTS OF DILATIONS
    Larsen, Nadia S.
    Li, Xin
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (05) : 1597 - 1603
  • [14] Weak crossed products and a generalisation of a result of Sarason
    Alaimia, MR
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 318 (1-3) : 181 - 193
  • [15] A New Method of Constructing Weak Crossed Products
    Chen, Quan-guo
    FILOMAT, 2022, 36 (04) : 1245 - 1253
  • [16] WEAK HAAGERUP PROPERTY OF W*-CROSSED PRODUCTS
    Meng, Qing
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2018, 97 (01) : 119 - 126
  • [17] CROSSED PRODUCTS
    STRATILA, S
    VOICULESCU, D
    ZSIDO, L
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 282 (15): : 779 - 782
  • [18] SIMPLICITY OF CROSSED PRODUCTS BY TWISTED PARTIAL ACTIONS
    Baraviera, Alexandre
    Cortes, Wagner
    Soares, Marlon
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 108 (02) : 202 - 225
  • [19] The ideal structure of algebraic partial crossed products
    Dokuchaev, M.
    Exel, R.
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2017, 115 : 91 - 134
  • [20] Brzezinski's crossed products and braided Hopf crossed products
    Di Luigi, C
    Guccione, JA
    Guccione, JJ
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (09) : 3563 - 3580