Hyers-Ulam stability of derivations on proper Jordan CQ*-algebras

被引:1
作者
Park, Choonkil [1 ]
Eskandani, Golamreza Zamani [2 ]
Vaezi, Hamid [2 ]
Shin, Dong Yun [3 ]
机构
[1] Hanyang Univ, Res Inst Nat Sci, Dept Math, Seoul 133791, South Korea
[2] Univ Tabriz, Fac Math Sci, Tabriz, Iran
[3] Univ Seoul, Dept Math, Seoul 130743, South Korea
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2012年
基金
新加坡国家研究基金会;
关键词
Hyers-Ulam stability; proper Jordan CQ*-algebra; Jordan derivation; fixed point method; FUNCTIONAL-EQUATION; RASSIAS STABILITY; HOMOMORPHISMS; MAPPINGS; SPACES;
D O I
10.1186/1029-242X-2012-114
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Eskandani and Vaezi proved the Hyers-Ulam stability of derivations on proper Jordan CQ*-algebras associated with the following Pexiderized Jensen type functional equation kf (x + y/k) = f(0)(x) + f(1)(y) by using direct method. Using fixed point method, we prove the Hyers-Ulam stability of derivations on proper Jordan CQ*-algebras. Moreover, we investigate the Pexiderized Jensen type functional inequality in proper Jordan CQ*-algebras.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] ON THE HYERS-ULAM STABILITY OF THE ARITHMETIC AND GEOMETRIC MEANS
    Pop, Vasile
    JOURNAL OF SCIENCE AND ARTS, 2009, (02) : 160 - 164
  • [42] HYERS-ULAM STABILITY FOR GEGENBAUER DIFFERENTIAL EQUATIONS
    Jung, Soon-Mo
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [43] Hyers-Ulam stability of Euler's equation
    Cimpean, Dalia Sabina
    Popa, Dorian
    APPLIED MATHEMATICS LETTERS, 2011, 24 (09) : 1539 - 1543
  • [44] HYERS-ULAM STABILITY OF TRIGONOMETRIC FUNCTIONAL EQUATIONS
    Chang, Jeongwook
    Chung, Jaeyoung
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 23 (04): : 567 - 575
  • [45] Hyers-Ulam Stability of Linear Differential Equations
    Murali, R.
    Selvan, A. Ponmana
    COMPUTATIONAL INTELLIGENCE, CYBER SECURITY AND COMPUTATIONAL MODELS: MODELS AND TECHNIQUES FOR INTELLIGENT SYSTEMS AND AUTOMATION, 2018, 844 : 183 - 192
  • [46] HYERS-ULAM STABILITY AND APPLICATIONS IN GAUGE SPACES
    Bota, M.
    Petru, T. P.
    Petrusel, G.
    MISKOLC MATHEMATICAL NOTES, 2013, 14 (01) : 41 - 47
  • [47] Hyers-Ulam stability of hypergeometric differential equations
    Abdollahpour, Mohammad Reza
    Rassias, Michael Th
    AEQUATIONES MATHEMATICAE, 2019, 93 (04) : 691 - 698
  • [48] Hyers-Ulam stability of Flett's points
    Das, M
    Riedel, T
    Sahoo, PK
    APPLIED MATHEMATICS LETTERS, 2003, 16 (03) : 269 - 271
  • [49] HYERS-ULAM STABILITY OF FIBONACCI FUNCTIONAL EQUATION
    Jung, S. -M.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2009, 35 (02) : 217 - 227
  • [50] Hyers-Ulam Stability of Pompeiu's Point
    Huang, Jinghao
    Li, Yongjin
    KYUNGPOOK MATHEMATICAL JOURNAL, 2015, 55 (01): : 103 - 107