Hyers-Ulam stability of derivations on proper Jordan CQ*-algebras

被引:1
|
作者
Park, Choonkil [1 ]
Eskandani, Golamreza Zamani [2 ]
Vaezi, Hamid [2 ]
Shin, Dong Yun [3 ]
机构
[1] Hanyang Univ, Res Inst Nat Sci, Dept Math, Seoul 133791, South Korea
[2] Univ Tabriz, Fac Math Sci, Tabriz, Iran
[3] Univ Seoul, Dept Math, Seoul 130743, South Korea
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2012年
基金
新加坡国家研究基金会;
关键词
Hyers-Ulam stability; proper Jordan CQ*-algebra; Jordan derivation; fixed point method; FUNCTIONAL-EQUATION; RASSIAS STABILITY; HOMOMORPHISMS; MAPPINGS; SPACES;
D O I
10.1186/1029-242X-2012-114
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Eskandani and Vaezi proved the Hyers-Ulam stability of derivations on proper Jordan CQ*-algebras associated with the following Pexiderized Jensen type functional equation kf (x + y/k) = f(0)(x) + f(1)(y) by using direct method. Using fixed point method, we prove the Hyers-Ulam stability of derivations on proper Jordan CQ*-algebras. Moreover, we investigate the Pexiderized Jensen type functional inequality in proper Jordan CQ*-algebras.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Hyers-Ulam stability of impulsive integral equations
    Zada, Akbar
    Riaz, Usman
    Khan, Farhan Ullah
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2019, 12 (03): : 453 - 467
  • [22] Fixed Points and Generalized Hyers-Ulam Stability
    Cadariu, L.
    Gavruta, L.
    Gavruta, P.
    ABSTRACT AND APPLIED ANALYSIS, 2012,
  • [23] On the Hyers-Ulam stability of a difference equation
    Jun, KW
    Kim, HM
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2005, 7 (04) : 397 - 407
  • [24] Spectral characterizations for Hyers-Ulam stability
    Buse, Constantin
    Saierli, Olivia
    Tabassum, Afshan
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2014, (30) : 1 - 14
  • [25] Generalized Dichotomies and Hyers-Ulam Stability
    Dragicevic, Davor
    RESULTS IN MATHEMATICS, 2024, 79 (01)
  • [26] HYERS-ULAM STABILITY OF BABBAGE EQUATION
    Palanivel, Rajendran
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 39 (03): : 731 - 737
  • [27] Hyers-Ulam stability with respect to gauges
    Brzdek, Janusz
    Popa, Dorian
    Rasa, Ioan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 453 (01) : 620 - 628
  • [28] The Hyers-Ulam stability of nonlinear recurrences
    Brzdek, Janusz
    Popa, Dorian
    Xu, Bing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (01) : 443 - 449
  • [29] HYERS-ULAM STABILITY OF THE LAPLACE OPERATOR
    Popa, Dorian
    Rasa, Ioan
    FIXED POINT THEORY, 2018, 19 (01): : 379 - 382
  • [30] HYERS-ULAM STABILITY OF A POLYNOMIAL EQUATION
    Li, Yongjin
    Hua, Liubin
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2009, 3 (02): : 86 - 90