On cohomology rings of non-commutative Hilbert schemes and CoHa-modules

被引:10
作者
Franzen, H. [1 ]
机构
[1] Univ Bonn, Math Inst, Endenicher Allee 60, D-53115 Bonn, Germany
关键词
EQUIVARIANT INTERSECTION THEORY; QUANTUM GROUPS; QUIVER MODULI; REPRESENTATIONS; ALGEBRAS;
D O I
10.4310/MRL.2016.v23.n3.a12
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that Chow groups of certain non-commutative Hilbert schemes have a basis consisting of monomials in Chern classes of the universal bundle. Furthermore, we realize the cohomology of non-commutative Hilbert schemes as a module over the Cohomological Hall algebra.
引用
收藏
页码:805 / 840
页数:36
相关论文
共 21 条
[11]  
KING AD, 1995, J REINE ANGEW MATH, V461, P179
[12]   MODULI OF REPRESENTATIONS OF FINITE-DIMENSIONAL ALGEBRAS [J].
KING, AD .
QUARTERLY JOURNAL OF MATHEMATICS, 1994, 45 (180) :515-530
[13]  
Kontsevich M, 2011, COMMUN NUMBER THEORY, V5, P231
[14]  
Lehn M, 2001, DUKE MATH J, V110, P345
[15]   Heisenberg algebra and Hilbert schemes of points on projective surfaces [J].
Nakajima, H .
ANNALS OF MATHEMATICS, 1997, 145 (02) :379-388
[16]  
NAKAJIMA H., 1996, REPRESENTATION THEOR, V19, P139
[17]  
Reineke M, 2005, ALGEBR REPRESENT TH, V8, P541, DOI 10.1007/s10468-005-8762-y
[18]   The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli [J].
Reineke, M .
INVENTIONES MATHEMATICAE, 2003, 152 (02) :349-368
[19]   Framed quiver moduli, cohomology, and quantum groups [J].
Reineke, Markus .
JOURNAL OF ALGEBRA, 2008, 320 (01) :94-115
[20]  
Soibelman Y., 2014, ARXIV14041606