On cohomology rings of non-commutative Hilbert schemes and CoHa-modules

被引:10
作者
Franzen, H. [1 ]
机构
[1] Univ Bonn, Math Inst, Endenicher Allee 60, D-53115 Bonn, Germany
关键词
EQUIVARIANT INTERSECTION THEORY; QUANTUM GROUPS; QUIVER MODULI; REPRESENTATIONS; ALGEBRAS;
D O I
10.4310/MRL.2016.v23.n3.a12
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that Chow groups of certain non-commutative Hilbert schemes have a basis consisting of monomials in Chern classes of the universal bundle. Furthermore, we realize the cohomology of non-commutative Hilbert schemes as a module over the Cohomological Hall algebra.
引用
收藏
页码:805 / 840
页数:36
相关论文
共 21 条
  • [1] [Anonymous], 1993, Geometric invariant theory
  • [2] Brion M, 1998, NATO ADV SCI I C-MAT, V514, P1
  • [3] Normality of Marsden-Weinstein reductions for representations of quivers
    Crawley-Boevey, W
    [J]. MATHEMATISCHE ANNALEN, 2003, 325 (01) : 55 - 79
  • [4] Edidin D, 1998, INVENT MATH, V131, P595, DOI 10.1007/s002220050214
  • [5] Smooth models of quiver moduli
    Engel, Johannes
    Reineke, Markus
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2009, 262 (04) : 817 - 848
  • [6] Chow rings of fine quiver moduli are tautologically presented
    Franzen, H.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2015, 279 (3-4) : 1197 - 1223
  • [7] Franzen H., 2015, ARXIV150204327
  • [8] Fulton W., 1998, FOLGE SERIES MODERN, V2
  • [9] Grojnowski I, 1996, MATH RES LETT, V3, P275
  • [10] Grothendieck A., 1958, Sem. Claude Chevalley, V3, P1