Recognizing Brain States Using Deep Sparse Recurrent Neural Network

被引:55
作者
Wang, Han [1 ]
Zhao, Shijie [2 ]
Dong, Qinglin [3 ]
Cui, Yan [1 ]
Chen, Yaowu [1 ]
Han, Junwei [2 ]
Xie, Li [1 ]
Liu, Tianming [3 ]
机构
[1] Zhejiang Univ, Coll Biomed Engn & Instrument Sci, Hangzhou 310027, Peoples R China
[2] Northwestern Polytech Univ, Sch Automat, Xian 710072, Peoples R China
[3] Univ Georgia, Dept Comp Sci, Bioimaging Res Ctr, Cort Architecture Imaging & Discovery Lab, Athens, GA 30602 USA
基金
美国国家科学基金会; 中国国家自然科学基金; 国家重点研发计划; 中国博士后科学基金;
关键词
Dynamic brain state; recurrent neural network; fMRI; brain networks; FUNCTIONAL INTERACTION; INDIVIDUAL-DIFFERENCES; ACTIVITY PATTERNS; FMRI; DYNAMICS; CONNECTIVITY; METASTABILITY; COMPLEXITY; GRADIENT; REWARD;
D O I
10.1109/TMI.2018.2877576
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Brain activity is a dynamic combination of different sensory responses and thus brain activity/state is continuously changing over time. However, the brain's dynamical functional states recognition at fast time-scales in task fMRI data have been rarely explored. In this paper, we propose a novel 5-layer deep sparse recurrent neural network (DSRNN) model to accurately recognize the brain states across the whole scan session. Specifically, the DSRNN model includes an input layer, one fully-connected layer, two recurrent layers, and a softmax output layer. The proposed framework has been tested on seven task fMRI data sets of Human Connectome Project. Extensive experiment results demonstrate that the proposed DSRNN model can accurately identify the brain's state in different task fMRI data sets and significantly outperforms other auto-correlation methods or non-temporal approaches in the dynamic brain state recognition accuracy. In general, the proposed DSRNN offers a new methodology for basic neuroscience and clinical research.
引用
收藏
页码:1058 / 1068
页数:11
相关论文
共 70 条
  • [1] Tracking Whole-Brain Connectivity Dynamics in the Resting State
    Allen, Elena A.
    Damaraju, Eswar
    Plis, Sergey M.
    Erhardt, Erik B.
    Eichele, Tom
    Calhoun, Vince D.
    [J]. CEREBRAL CORTEX, 2014, 24 (03) : 663 - 676
  • [2] Function in the human connectome: Task-fMRI and individual differences in behavior
    Barch, Deanna M.
    Burgess, Gregory C.
    Harms, Michael P.
    Petersen, Steven E.
    Schlaggar, Bradley L.
    Corbetta, Maurizio
    Glasser, Matthew F.
    Curtiss, Sandra
    Dixit, Sachin
    Feldt, Cindy
    Nolan, Dan
    Bryant, Edward
    Hartley, Tucker
    Footer, Owen
    Bjork, James M.
    Poldrack, Russ
    Smith, Steve
    Johansen-Berg, Heidi
    Snyder, Abraham Z.
    Van Essen, David C.
    [J]. NEUROIMAGE, 2013, 80 : 169 - 189
  • [3] LEARNING LONG-TERM DEPENDENCIES WITH GRADIENT DESCENT IS DIFFICULT
    BENGIO, Y
    SIMARD, P
    FRASCONI, P
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (02): : 157 - 166
  • [4] Mapping anterior temporal lobe language areas with fMRI: A multicenter normative study
    Binder, Jeffrey R.
    Gross, William L.
    Allendorfer, Jane B.
    Bonilha, Leonardo
    Chapin, Jessica
    Edwards, Jonathan C.
    Grabowski, Thomas J.
    Langfitt, John T.
    Loring, David W.
    Lowe, Mark J.
    Koenig, Katherine
    Morgan, Paul S.
    Ojemann, Jeffrey G.
    Rorden, Christopher
    Szaflarski, Jerzy P.
    Tivarus, Madalina E.
    Weaver, Kurt E.
    [J]. NEUROIMAGE, 2011, 54 (02) : 1465 - 1475
  • [5] Measuring fMRI reliability with the intra-class correlation coefficient
    Caceres, Alejandro
    Hall, Deanna L.
    Zelaya, Fernando O.
    Williams, Steven C. R.
    Mehta, Mitul A.
    [J]. NEUROIMAGE, 2009, 45 (03) : 758 - 768
  • [6] Movement and mind:: A functional imaging study of perception and interpretation of complex intentional movement patterns
    Castelli, F
    Happé, F
    Frith, U
    Frith, C
    [J]. NEUROIMAGE, 2000, 12 (03) : 314 - 325
  • [7] Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes
    Castelli, Fulvia
    Frith, Chris
    Happe, Francesca
    Frith, Uta
    [J]. BRAIN, 2002, 125 : 1839 - 1849
  • [8] Time-frequency dynamics of resting-state brain connectivity measured with fMRI
    Chang, Catie
    Glover, Gary H.
    [J]. NEUROIMAGE, 2010, 50 (01) : 81 - 98
  • [9] Spatiotemporal Modeling of Brain Dynamics Using Resting-State Functional Magnetic Resonance Imaging with Gaussian Hidden Markov Model
    Chen, Shiyang
    Langley, Jason
    Chen, Xiangchuan
    Hu, Xiaoping
    [J]. BRAIN CONNECTIVITY, 2016, 6 (04) : 326 - 334
  • [10] Cho K, 2014, ARXIV14061078