On Ito-Kurzweil-Henstock integral and integration-by-part formula

被引:0
作者
Toh, TL [1 ]
Chew, TS [1 ]
机构
[1] Nanyang Technol Univ, Natl Inst Educ, Math & Math Educ Acad Grp, Singapore 637616, Singapore
关键词
generalized Riemann approach; stochastic integral; integration-by-parts;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we derive the Integration-by-Parts Formula using the generalized Riemann approach to stochastic integrals, which is called the Ito-Kurzweil-Henstock integral.
引用
收藏
页码:653 / 663
页数:11
相关论文
共 13 条
  • [1] HENSTOCK R, 1955, J LOND MATH SOC, V30, P273
  • [2] Henstock R., 1988, LECT THEORY INTEGRAT
  • [3] Henstock R., 1991, GEN THEORY INTEGRATI
  • [4] Kurzweil J., 1957, CZECH MATH J, V7, P418, DOI [DOI 10.21136/CMJ.1957.100258, 10.21136/CMJ.1957.100258]
  • [5] McShane E.J., 1974, Stochastic calculus and stochastic models
  • [6] POPSTOJANOVIC ZR, 1972, SIAM J APPL MATH, V22, P89
  • [7] COMPARISON OF STOCHASTIC INTEGRALS
    PROTTER, P
    [J]. ANNALS OF PROBABILITY, 1979, 7 (02) : 276 - 289
  • [8] Protter Ph., 2004, Stochastic Integration and Differential Equations
  • [9] Toh Tin-Lam, 2001, REAL ANAL EXCH, V27, P495
  • [10] The Riemann approach to stochastic integration using non-uniform meshes
    Toh, TL
    Chew, TS
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 280 (01) : 133 - 147