Generic Well-posedness for an Inverse Source Problem for a Multi-term Time-fractional Diffusion Equation

被引:3
|
作者
Li, Zhiyuan [1 ]
Cheng, Xing [2 ]
Liu, Yikan [3 ]
机构
[1] Shandong Univ Technol, Sch Math & Stat, Zibo 255049, Shangdong, Peoples R China
[2] Hohai Univ, Coll Sci, Nanjing 210098, Jiangsu, Peoples R China
[3] Hokkaido Univ, Res Inst Elect Sci, Kita Ward, N127W7, Sapporo, Hokkaido 0600812, Japan
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2020年 / 24卷 / 04期
基金
日本学术振兴会; 中国国家自然科学基金;
关键词
multi-term time-fractional diffusion equation; inverse source problem; Fredholm alternative; DISPERSION;
D O I
10.11650/tjm/191103
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with an inverse source problem for the multi-term time-fractional diffusion equation with a diffusion parameter by using final overdetermination. On the basis of analytic Fredholm theory, a generic well-posedness of the inverse source problem in some suitable function space is proved.
引用
收藏
页码:1005 / 1020
页数:16
相关论文
共 50 条
  • [1] Inverse source problem for multi-term time-fractional diffusion equation with nonlocal boundary conditions
    Derbissaly, Bauyrzhan
    Sadybekov, Makhmud
    AIMS MATHEMATICS, 2024, 9 (04): : 9969 - 9988
  • [2] Galerkin spectral method for a multi-term time-fractional diffusion equation and an application to inverse source problem
    Sun, L. L.
    Chang, M. L.
    NETWORKS AND HETEROGENEOUS MEDIA, 2023, 18 (01) : 212 - 243
  • [3] Local Well-posedness of Nonlinear Time-fractional Diffusion Equation
    Suechoei, Apassara
    Ngiamsunthorn, Parinya Sa
    THAI JOURNAL OF MATHEMATICS, 2021, 19 (03): : 865 - 884
  • [4] An inverse space-dependent source problem for a multi-term time fractional diffusion equation
    Jiang, Suzhen
    Wu, Yujiang
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (12)
  • [5] Well-posedness of the stochastic time-fractional diffusion and wave equations and inverse random source problems
    Lassas, Matti
    Li, Zhiyuan
    Zhang, Zhidong
    INVERSE PROBLEMS, 2023, 39 (08)
  • [6] Identification of the time-dependent source term in a multi-term time-fractional diffusion equation
    Y. S. Li
    L. L. Sun
    Z. Q. Zhang
    T. Wei
    Numerical Algorithms, 2019, 82 : 1279 - 1301
  • [7] Well-Posedness and Asymptotic Estimate for a Diffusion Equation with Time-Fractional Derivative
    Li, Zhiyuan
    Huang, Xinchi
    Yamamoto, Masahiro
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2025, 46 (01) : 115 - 138
  • [8] A STRONG POSITIVITY PROPERTY AND A RELATED INVERSE SOURCE PROBLEM FOR MULTI-TERM TIME-FRACTIONAL DIFFUSION EQUATIONS
    胡利
    李志远
    杨晓娜
    Acta Mathematica Scientia, 2024, 44 (05) : 2019 - 2040
  • [9] Well-Posedness and Asymptotic Estimate for a Diffusion Equation with Time-Fractional Derivative
    Zhiyuan LI
    Xinchi HUANG
    Masahiro YAMAMOTO
    Chinese Annals of Mathematics,Series B, 2025, (01) : 115 - 138
  • [10] Identification of the time-dependent source term in a multi-term time-fractional diffusion equation
    Li, Y. S.
    Sun, L. L.
    Zhang, Z. Q.
    Wei, T.
    NUMERICAL ALGORITHMS, 2019, 82 (04) : 1279 - 1301