共 41 条
Selective presynaptic enhancement of the prefrontal cortex to nucleus accumbens pathway by cocaine
被引:76
作者:
Suska, Anna
[1
]
Lee, Brian R.
[2
]
Huang, Yanhua H.
[3
]
Dong, Yan
[4
]
Schlueter, Oliver M.
[1
]
机构:
[1] European Neurosci Inst, D-37077 Gottingen, Germany
[2] Scripps Res Inst, Dept Mol Therapeut, Jupiter, FL 33458 USA
[3] Univ Pittsburgh, Dept Psychiat, Pittsburgh, PA 15260 USA
[4] Univ Pittsburgh, Dept Neurosci, Pittsburgh, PA 15260 USA
来源:
基金:
美国国家卫生研究院;
关键词:
addiction;
multiple probability fluctuation analysis;
channelrhodopsin;
LONG-TERM DEPRESSION;
SEEKING BEHAVIOR;
BASOLATERAL AMYGDALA;
MULTIVESICULAR RELEASE;
INDUCED REINSTATEMENT;
SYNAPTIC PLASTICITY;
GLUTAMATE RELEASE;
REWARD-SEEKING;
AMPA RECEPTORS;
DRUG-SEEKING;
D O I:
10.1073/pnas.1206287110
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
The nucleus accumbens (NAc) regulates motivated behavior by, in part, processing excitatory synaptic projections from several brain regions. Among these regions, the prefrontal cortex (PFC) and basolateral amygdala, convey executive control and affective states, respectively. Whereas glutamatergic synaptic transmission within the NAc has been recognized as a primary cellular target for cocaine and other drugs of abuse to induce addiction-related pathophysiological motivational states, the understanding has been thus far limited to drug-induced postsynaptic alterations. It remains elusive whether exposure to cocaine or other drugs of abuse influences presynaptic functions of these excitatory projections, and if so, in which projection pathways. Using optogenetic methods combined with biophysical assays, we demonstrate that the presynaptic release probability (Pr) of the PFC-to-NAc synapses was enhanced after short-term withdrawal (1 d) and long-term (45 d) withdrawal from either noncontingent (i.p. injection) or contingent (self-administration) exposure to cocaine. After long-term withdrawal of contingent drug exposure, the Pr was higher compared with i.p. injected rats. In contrast, within the basolateral amygdala afferents, presynaptic Pr was not significantly altered in any of these experimental conditions. Thus, cocaine-induced procedure-and pathway-specific presynaptic enhancement of excitatory synaptic transmission in the NAc. These results, together with previous findings of cocaine-induced postsynaptic enhancement, suggest an increased PFC-to-NAc shell glutamatergic synaptic transmission after withdrawal from exposure to cocaine. This presynaptic alteration may interact with other cocaine-induced cellular adaptations to shift the functional output of NAc neurons, contributing to the addictive emotional and motivational state.
引用
收藏
页码:713 / 718
页数:6
相关论文