Plant Growth-Promoting Bacteria: Biological Tools for the Mitigation of Salinity Stress in Plants

被引:316
|
作者
Kumar, Akhilesh [1 ]
Singh, Saurabh [1 ]
Gaurav, Anand Kumar [1 ]
Srivastava, Sudhakar [1 ]
Verma, Jay Prakash [1 ]
机构
[1] Banaras Hindu Univ, Inst Environm & Sustainable Dev, Varanasi, Uttar Pradesh, India
来源
FRONTIERS IN MICROBIOLOGY | 2020年 / 11卷
关键词
microbiome; plant growth-promoting bacteria; salinity stress; salt stress amelioration; sustainable agriculture; ORYZA-SATIVA L; SALT-TOLERANCE; ACC DEAMINASE; ENDOPHYTIC BACTERIA; MICROBIAL COMMUNITY; BIOFILM REACTOR; DROUGHT STRESS; SOIL-SALINITY; RHIZOBACTERIA; RICE;
D O I
10.3389/fmicb.2020.01216
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Salinity stress is one of the major abiotic stresses threatening sustainable crop production worldwide. The extent of salinity affected area is expected to cover about 50% of total agricultural land by 2050. Salinity stress produces various detrimental effects on plants' physiological, biochemical, and molecular features and reduces productivity. The poor plant growth under salinity stress is due to reduced nutrient mobilization, hormonal imbalance, and formation of reactive oxygen species (ROS), ionic toxicity, and osmotic stress. Additionally, salinity also modulates physicochemical properties and reduces the microbial diversity of soil and thus decreases soil health. On the other hand, the demand for crop production is expected to increase in coming decades owing to the increasing global population. Conventional agricultural practices and improved salt-tolerant crop varieties will not be sufficient to achieve the yields desired in the near future. Plants harbor diverse microbes in their rhizosphere, and these have the potential to cope with the salinity stress. These salinity-tolerant plant growth-promoting bacteria (PGPB) assist the plants in withstanding saline conditions. These plant-associated microbes produce different compounds such as 1-aminocyclopropane-1-carboxylate (ACC) deaminase, indole-3-acetic acid (IAA), antioxidants, extracellular polymeric substance (EPS), and volatile organic compounds (VOC). Additionally, the naturally associated microbiome of plants has the potential to protect the host through stress avoidance, tolerance, and resistance strategies. Recent developments in microbiome research have shown ways in which novel microbe-assisted technologies can enhance plant salt tolerance and enable higher crop production under saline conditions. This focused review article presents the global scenario of salinity stress and discusses research highlights regarding PGPB and the microbiome as a biological tool for mitigation of salinity stress in plants.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Mitigation of salinity stress in plants using plant growth promoting bacteria
    Bhise, Komal K.
    Dandge, Padma B.
    SYMBIOSIS, 2019, 79 (03) : 191 - 204
  • [2] Mitigation of salinity stress in plants using plant growth promoting bacteria
    Komal K. Bhise
    Padma B. Dandge
    Symbiosis, 2019, 79 : 191 - 204
  • [3] Halotolerant plant growth-promoting bacteria: Prospects for alleviating salinity stress in plants
    Etesami, Hassan
    Glick, Bernard R.
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2020, 178
  • [4] Stress mitigation strategies of plant growth-promoting rhizo-bacteria: Plant growth-promoting rhizobacteria mechanisms
    Sharma, Vriti
    Singh, Aakriti
    Sharma, Diksha
    Sharma, Aashima
    Phogat, Sarika
    Chakraborty, Navjyoti
    Chatterjee, Sayan
    Purty, Ram Singh
    PLANT SCIENCE TODAY, 2021, 8 : 25 - 32
  • [5] Plant growth-promoting endophytic bacteria augment growth and salinity tolerance in rice plants
    Khan, M. A.
    Asaf, S.
    Khan, A. L.
    Adhikari, A.
    Jan, R.
    Ali, S.
    Imran, M.
    Kim, K-M
    Lee, I-J
    PLANT BIOLOGY, 2020, 22 (05) : 850 - 862
  • [6] Effect of plant growth-promoting rhizobacteria on alleviating salinity stress in plants: a review
    Kumar, Ashok
    Behera, Itishree
    Langthasa, Mrinalini
    PrakashNaroju, Sai
    JOURNAL OF PLANT NUTRITION, 2023, 46 (10) : 2525 - 2550
  • [7] Use of plant growth-promoting bacteria to enhance salinity stress in soybean (Glycine max L.) plants
    Abulfaraj, Aala A.
    Jalal, Rewaa S.
    SAUDI JOURNAL OF BIOLOGICAL SCIENCES, 2021, 28 (07) : 3823 - 3834
  • [8] The role of plant growth-promoting bacteria in alleviating drought stress on pepper plants
    Admassie, Mesele
    Woldehawariat, Yitbark
    Alemu, Tesfaye
    Gonzalez, Enrique
    Jimenez, Juan Francisco
    AGRICULTURAL WATER MANAGEMENT, 2022, 272
  • [9] Reducing Drought Stress in Plants by Encapsulating Plant Growth-Promoting Bacteria with Polysaccharides
    Saberi Riseh, Roohallah
    Ebrahimi-Zarandi, Marzieh
    Gholizadeh Vazvani, Mozhgan
    Skorik, Yury A.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (23)
  • [10] Plant growth-promoting bacteria confer resistance in tomato plants to salt stress
    Mayak, S
    Tirosh, T
    Glick, BR
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2004, 42 (06) : 565 - 572