RF Behavior of a Coaxial Interaction Structure for 0.24-THz, 2-MW Gyrotron

被引:6
作者
Kumar, Nitin [1 ]
Bera, Anirban [1 ]
机构
[1] CSIR Cent Elect Engn Res Inst, Microwave Tube Div, Pilani 333031, Rajasthan, India
关键词
Beam-wave interaction; coaxial cavity (COCA); coaxial insert; coupling coefficient; gyrotron; CORRUGATED INNER CONDUCTOR; GHZ GYROTRON; CAVITY DESIGN; 170-GHZ;
D O I
10.1109/TED.2020.3000975
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The coaxial interaction structure for a 0.24-THz, 2-MW gyrotron is designed, and its RF behavior is analyzed for the beam current of 60 A and the beam voltage of 90 kV. The searching of a suitable, very high-order TE mode, which satisfies all the technical conditions required to generate 2-MW RF power, is an important and critical step in the development of a coaxial-cavity (COCA) gyrotron. The detailed analysis of mode selection is described in this article. The geometry of the axially corrugated insert is optimized using an in-house code COCA. Based on the optimized geometry of the coaxial insert and the cylindrical cavity, the coupling coefficient and the start oscillation current are computed to analyze the mode competition for the operating mode TE42,28. The particle-in-cell (PIC) algorithm-based simulation tool is used for the beam-wave interaction computation. Very fine meshing is implemented in the simulations, considering the high frequency and fine geometry of the coaxial insert. The electron beam parameters and the cavity magnetic field are optimized first aiming at the RF power >= 2 MW and frequency 240 GHz. The final results of the cavity design confirm 2.2-MW RF power and 239.975-GHz frequency at 9.74-T magnetic field.
引用
收藏
页码:3369 / 3377
页数:9
相关论文
共 50 条
[1]   Spatio-temporal chaos in the transverse section of gyrotron resonators [J].
Airila, MI ;
Dumbrajs, O .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2002, 30 (03) :846-850
[2]   Design and emission uniformity studies of a 1.5-MW gyrotron electron gun [J].
Anderson, JP ;
Korbly, SE ;
Temkin, RJ ;
Shapiro, MA ;
Felch, KL ;
Cauffman, S .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2002, 30 (06) :2117-2123
[3]   Inverse Magnetron Injection Gun for Megawatt Power, Sub-THz Gyrotron [J].
Arti ;
Kumar, Nitin ;
Singh, Udaybir ;
Gahlaut, Vishant ;
Bera, Anirban .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2019, 47 (02) :1262-1268
[4]  
Avramides K. A., 2008, P 35 EPS C PLASM PHY, P9
[5]   Gyrotron coaxial cylindrical resonators with corrugated inner conductor: Theory and experiment [J].
Barroso, JJ ;
Correa, RA ;
de Castro, PJ .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1998, 46 (09) :1221-1230
[6]   Resonance in open coaxial cylindrical resonators [J].
Barroso, JJ ;
Castro, PJ ;
Correa, RA .
INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES, 1996, 17 (05) :921-932
[7]   Mode Selection and Coaxial Cavity Design for a 4-MW 170-GHz Gyrotron, Including Thermal Aspects [J].
Beringer, Matthias Hermann ;
Kern, Stefan ;
Thumm, Manfred .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2013, 41 (04) :853-861
[8]  
Birdsall C. K., 2004, I PHYS SERIES PLASMA
[9]   TWANG-PIC, a novel gyro-averaged one-dimensional particle-in-cell code for interpretation of gyrotron experiments [J].
Braunmueller, F. ;
Tran, T. M. ;
Vuillemin, Q. ;
Alberti, S. ;
Genoud, J. ;
Hogge, J. -Ph. ;
Tran, M. Q. .
PHYSICS OF PLASMAS, 2015, 22 (06)
[10]  
Constable D.A., 2017, 2017 Eighteenth International Vacuum Electronics Conference (IVEC), P1, DOI DOI 10.1109/IVEC.2017.8289633