Orientation embedded high order shape functions for the exact sequence elements of all shapes

被引:75
作者
Fuentes, Federico [1 ]
Keith, Brendan [1 ]
Demkowicz, Leszek [1 ]
Nagaraj, Sriram [1 ]
机构
[1] Univ Texas Austin, ICES, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
High order shape functions; Orientation embedding; Energy spaces; Pyramid; Hierarchical shape functions; Hybrid meshes; INTEGRATED JACOBI-POLYNOMIALS; MAXWELLS EQUATIONS; FINITE-ELEMENTS; SIMPLICES;
D O I
10.1016/j.camwa.2015.04.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A unified construction of high order shape functions is given for all four classical energy spaces (H-1, H (curl), H (div) and L-2) and for elements of "all" shapes (segment, quadrilateral, triangle, hexahedron, tetrahedron, triangular prism and pyramid). The discrete spaces spanned by the shape functions satisfy the commuting exact sequence property for each element. The shape functions are conforming, hierarchical and compatible with other neighboring elements across shared boundaries so they may be used in hybrid meshes. Expressions for the shape functions are given in coordinate free format in terms of the relevant affine coordinates of each element shape. The polynomial order is allowed to differ for each separate topological entity (vertex, edge, face or interior) in the mesh, so the shape functions can be used to implement local p adaptive finite element methods. Each topological entity may have its own orientation, and the shape functions can have that orientation embedded by a simple permutation of arguments. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:353 / 458
页数:106
相关论文
共 23 条
[1]   Hierarchic hp-edge element families for Maxwell's equations on hybrid quadrilateral/triangular meshes [J].
Ainsworth, M ;
Coyle, J .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (49-50) :6709-6733
[2]   BERNSTEIN-BEZIER FINITE ELEMENTS OF ARBITRARY ORDER AND OPTIMAL ASSEMBLY PROCEDURES [J].
Ainsworth, Mark ;
Andriamaro, Gaelle ;
Davydov, Oleg .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2011, 33 (06) :3087-3109
[3]   Approximation of H(div) with High-Order Optimal Finite Elements for Pyramids, Prisms and Hexahedra [J].
Bergot, Morgane ;
Durufle, Marc .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2013, 14 (05) :1372-1414
[4]   Higher-order Finite Elements for Hybrid Meshes Using New Nodal Pyramidal Elements [J].
Bergot, Morgane ;
Cohen, Gary ;
Durufle, Marc .
JOURNAL OF SCIENTIFIC COMPUTING, 2010, 42 (03) :345-381
[5]   Sparse shape functions for tetrahedral p-FEM using integrated Jacobi polynomials [J].
Beuchler, S. ;
Pillwein, V. .
COMPUTING, 2007, 80 (04) :345-375
[6]   New shape functions for triangular p-FEM using integrated Jacobi polynomials [J].
Beuchler, S ;
Schoeberl, J .
NUMERISCHE MATHEMATIK, 2006, 103 (03) :339-366
[7]  
Beuchler S, 2012, TEXT MG SYMB COMPUT, P21, DOI 10.1007/978-3-7091-0794-2_2
[8]   Sparsity optimized high order finite element functions for H(curl) on tetrahedra [J].
Beuchler, Sven ;
Pillwein, Veronika ;
Zaglmayr, Sabine .
ADVANCES IN APPLIED MATHEMATICS, 2013, 50 (05) :749-769
[9]   Sparsity optimized high order finite element functions for H(div) on simplices [J].
Beuchler, Sven ;
Pillwein, Veronika ;
Zaglmayr, Sabine .
NUMERISCHE MATHEMATIK, 2012, 122 (02) :197-225
[10]  
Ciarlet P. G., 1994, FINITE ELEMENT METHO