Modeling Epistasis in Genomic Selection

被引:170
作者
Jiang, Yong [1 ]
Reif, Jochen C. [1 ]
机构
[1] Leibniz Inst Plant Genet & Crop Plant Res IPK, Dept Breeding Res, D-06466 Stadt Seeland, Germany
关键词
epistasis; genomic selection; genomic best linear unbiased prediction (G-BLUP); extended G-BLUP (EG-BLUP); reproducing kernel Hilbert space regression (RKHS); GenPred; shared data resource; QUANTITATIVE TRAIT LOCI; GENETIC VALUES; BREEDING POPULATIONS; ASSISTED PREDICTION; ENABLED PREDICTION; WIDE ASSOCIATION; MAIZE; WHEAT; ARCHITECTURE; MARKERS;
D O I
10.1534/genetics.115.177907
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Modeling epistasis in genomic selection is impeded by a high computational load. The extended genomic best linear unbiased prediction (EG-BLUP) with an epistatic relationship matrix and the reproducing kernel Hilbert space regression (RKHS) are two attractive approaches that reduce the computational load. In this study, we proved the equivalence of EG-BLUP and genomic selection approaches, explicitly modeling epistatic effects. Moreover, we have shown why the RKHS model based on a Gaussian kernel captures epistatic effects among markers. Using experimental data sets in wheat and maize, we compared different genomic selection approaches and concluded that prediction accuracy can be improved by modeling epistasis for selfing species but may not for outcrossing species.
引用
收藏
页码:759 / +
页数:15
相关论文
共 48 条
  • [31] Epistasis and quantitative traits: using model organisms to study gene-gene interactions
    Mackay, Trudy F. C.
    [J]. NATURE REVIEWS GENETICS, 2014, 15 (01) : 22 - 33
  • [32] Meuwissen THE, 2001, GENETICS, V157, P1819
  • [33] Kernel-based whole-genome prediction of complex traits: a review
    Morota, Gota
    Gianola, Daniel
    [J]. FRONTIERS IN GENETICS, 2014, 5
  • [34] Unraveling Additive from Nonadditive Effects Using Genomic Relationship Matrices
    Munoz, Patricio R.
    Resende, Marcio F. R., Jr.
    Gezan, Salvador A.
    Vilela Resende, Marcos Deon
    de los Campos, Gustavo
    Kirst, Matias
    Huber, Dudley
    Peter, Gary F.
    [J]. GENETICS, 2014, 198 (04) : 1759 - +
  • [35] Comparison Between Linear and Non-parametric Regression Models for Genome-Enabled Prediction in Wheat
    Perez-Rodriguez, Paulino
    Gianola, Daniel
    Manuel Gonzalez-Camacho, Juan
    Crossa, Jose
    Manes, Yann
    Dreisigacker, Susanne
    [J]. G3-GENES GENOMES GENETICS, 2012, 2 (12): : 1595 - 1605
  • [36] Epistasis - the essential role of gene interactions in the structure and evolution of genetic systems
    Phillips, Patrick C.
    [J]. NATURE REVIEWS GENETICS, 2008, 9 (11) : 855 - 867
  • [37] Genomic Selection in Wheat Breeding using Genotyping-by-Sequencing
    Poland, Jesse
    Endelman, Jeffrey
    Dawson, Julie
    Rutkoski, Jessica
    Wu, Shuangye
    Manes, Yann
    Dreisigacker, Susanne
    Crossa, Jose
    Sanchez-Villeda, Hector
    Sorrells, Mark
    Jannink, Jean-Luc
    [J]. PLANT GENOME, 2012, 5 (03) : 103 - 113
  • [38] Genomic Predictability of Interconnected Biparental Maize Populations
    Riedelsheimer, Christian
    Endelman, Jeffrey B.
    Stange, Michael
    Sorrells, Mark E.
    Jannink, Jean-Luc
    Melchinger, Albrecht E.
    [J]. GENETICS, 2013, 194 (02) : 493 - +
  • [39] Evaluation of Genomic Prediction Methods for Fusarium Head Blight Resistance in Wheat
    Rutkoski, Jessica
    Benson, Jared
    Jia, Yi
    Brown-Guedira, Gina
    Jannink, Jean-Luc
    Sorrells, Mark
    [J]. PLANT GENOME, 2012, 5 (02) : 51 - 61
  • [40] Estimating Additive and Non-Additive Genetic Variances and Predicting Genetic Merits Using Genome-Wide Dense Single Nucleotide Polymorphism Markers
    Su, Guosheng
    Christensen, Ole F.
    Ostersen, Tage
    Henryon, Mark
    Lund, Mogens S.
    [J]. PLOS ONE, 2012, 7 (09):