Experiments on wind-perturbed rogue wave hydrodynamics using the Peregrine breather model

被引:64
作者
Chabchoub, A. [1 ,2 ]
Hoffmann, N. [2 ,3 ]
Branger, H. [4 ]
Kharif, C. [4 ]
Akhmediev, N. [5 ]
机构
[1] Swinburne Univ Technol, Ctr Ocean Engn Sci & Technol, Hawthorn, Vic 3122, Australia
[2] Univ London Imperial Coll Sci Technol & Med, Dept Mech Engn, London SW7 2AZ, England
[3] Hamburg Univ Technol, Dynam Grp, D-21073 Hamburg, Germany
[4] Aix Marseille Univ, CNRS, Cent Marseille, IRPHE UMR 7342, F-13384 Marseille, France
[5] Australian Natl Univ, Inst Adv Studies, Opt Sci Grp, Res Sch Phys & Engn, Canberra, ACT 0200, Australia
基金
澳大利亚研究理事会;
关键词
DEEP-WATER; MODULATIONAL INSTABILITY; SURFACE-WAVES; STABILITY; SHEAR; MECHANISMS; EVOLUTION; TRAINS; FIELD;
D O I
10.1063/1.4824706
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Being considered as a prototype for description of oceanic rogue waves, the Peregrine breather solution of the nonlinear Schrodinger equation has been recently observed and intensely investigated experimentally in particular within the context of water waves. Here, we report the experimental results showing the evolution of the Peregrine solution in the presence of wind forcing in the direction of wave propagation. The results show the persistence of the breather evolution dynamics even in the presence of strong wind and chaotic wave field generated by it. Furthermore, we have shown that characteristic spectrum of the Peregrine breather persists even at the highest values of the generated wind velocities thus making it a viable characteristic for prediction of rogue waves. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:7
相关论文
共 40 条
[1]   Early detection of rogue waves in a chaotic wave field [J].
Akhmediev, N. ;
Soto-Crespo, Jose M. ;
Ankiewicz, A. ;
Devine, N. .
PHYSICS LETTERS A, 2011, 375 (33) :2999-3001
[2]   Rogue wave early warning through spectral measurements? [J].
Akhmediev, Nail ;
Ankiewicz, Adrian ;
Soto-Crespo, J. M. ;
Dudley, John M. .
PHYSICS LETTERS A, 2011, 375 (03) :541-544
[3]   EXACT 1ST-ORDER SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
AKHMEDIEV, NN ;
ELEONSKII, VM ;
KULAGIN, NE .
THEORETICAL AND MATHEMATICAL PHYSICS, 1987, 72 (02) :809-818
[4]   EFFECTS OF RANDOMNESS ON STABILITY OF 2-DIMENSIONAL SURFACE WAVETRAINS [J].
ALBER, IE .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1978, 363 (1715) :525-546
[5]   Predicting the breaking onset of surface water waves [J].
Babanin, Alexander ;
Chalikov, Dmitry ;
Young, Ian ;
Savelyev, Ivan .
GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (07)
[6]   Observation of Peregrine Solitons in a Multicomponent Plasma with Negative Ions [J].
Bailung, H. ;
Sharma, S. K. ;
Nakamura, Y. .
PHYSICAL REVIEW LETTERS, 2011, 107 (25)
[7]   Modulation of gravity waves with shear in water [J].
Baumstein, AI .
STUDIES IN APPLIED MATHEMATICS, 1998, 100 (04) :365-390
[8]   DISINTEGRATION OF WAVE TRAINS ON DEEP WATER .1. THEORY [J].
BENJAMIN, TB ;
FEIR, JE .
JOURNAL OF FLUID MECHANICS, 1967, 27 :417-&
[9]   EXPERIMENTAL-STUDY OF THE INFLUENCE OF WIND ON BENJAMIN-FEIR SIDE-BAND INSTABILITY [J].
BLIVEN, LF ;
HUANG, NE ;
LONG, SR .
JOURNAL OF FLUID MECHANICS, 1986, 162 :237-260
[10]   Super Rogue Waves: Observation of a Higher-Order Breather in Water Waves [J].
Chabchoub, A. ;
Hoffmann, N. ;
Onorato, M. ;
Akhmediev, N. .
PHYSICAL REVIEW X, 2012, 2 (01)