Existence and large time behavior for a stochastic model of modified magnetohydrodynamic equations

被引:13
作者
Razafimandimby, Paul Andre [1 ]
Sango, Mamadou [2 ]
机构
[1] Univ Leoben, Dept Math & Informat Technol, A-8700 Leoben, Austria
[2] Univ Pretoria, Dept Math & Appl Math, ZA-0002 Pretoria, South Africa
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2015年 / 66卷 / 05期
基金
奥地利科学基金会; 新加坡国家研究基金会;
关键词
Non-Newtonian fluids; MHD; Magnetohydrodynamics; Martingale solution; Asymptotic behavior; Long-time behavior; Exponential decay; NAVIER-STOKES EQUATIONS; ASYMPTOTIC-BEHAVIOR; EVOLUTION-EQUATIONS; WEAK SOLUTIONS; ERGODICITY; DRIVEN; SYSTEM; FLUIDS; FLOWS; NOISE;
D O I
10.1007/s00033-015-0534-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a system of nonlinear stochastic partial differential equations describing the motion of turbulent non-Newtonian media in the presence of fluctuating magnetic field. The system is basically obtained by a coupling of the dynamical equations of a non-Newtonian fluids having p-structure and the Maxwell equations. We mainly show the existence of weak martingale solutions and their exponential decay when time goes to infinity.
引用
收藏
页码:2197 / 2235
页数:39
相关论文
共 72 条
[1]   Existence of global solutions and invariant measures for stochastic differential equations driven by Poisson type noise with non-Lipschitz coefficients [J].
Albeverio, Sergio ;
Brzezniak, Zdzislaw ;
Wu, Jiang-Lun .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 371 (01) :309-322
[2]  
[Anonymous], 1986, Ann Mat Pura Appl, DOI [DOI 10.1007/BF01762360, DOI 10.1007/BF01762360.MR916688]
[3]  
[Anonymous], 1990, NONLINEAR FUNCTION A
[4]   Existence and ergodicity for the two-dimensional stochastic magneto-hydrodynamics equations [J].
Barbu, Viorel ;
Da Prato, Giuseppe .
APPLIED MATHEMATICS AND OPTIMIZATION, 2007, 56 (02) :145-168
[5]   YOUNG MEASURE-VALUED SOLUTIONS FOR NON-NEWTONIAN INCOMPRESSIBLE FLUIDS [J].
BELLOUT, H ;
BLOOM, F ;
NECAS, J .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1994, 19 (11-12) :1763-1803
[6]  
Bensoussan A, 1973, J FUNCT ANAL, V13, P95
[7]  
Billingsley Patrick, 1999, Wiley Series in Probability and Statistics: Probability and Statistics, V2nd
[8]  
Biskamp D., 2003, MAGNETOHYDRODYNAMICA
[9]   Stochastic nonlinear beam equations [J].
Brzezniak, Z ;
Maslowski, B ;
Seidler, J .
PROBABILITY THEORY AND RELATED FIELDS, 2005, 132 (01) :119-149
[10]  
Brzezniak Z, 2001, ANN PROBAB, V29, P1796