A new discrete Hardy-type inequality with kernels and monotone functions

被引:2
作者
Kalybay, Aigerim [1 ]
Persson, Lars-Erik [2 ,3 ]
Temirkhanova, Ainur [4 ]
机构
[1] KIMEP Univ, Alma Ata 050010, Kazakhstan
[2] Lulea Univ Technol, S-97187 Lulea, Sweden
[3] Narvik Univ Coll, N-8505 Narvik, Norway
[4] LN Gumilyov Eurasian Natl Univ, Astana 010008, Kazakhstan
关键词
inequality; Hardy-type inequality; kernel; matrix operator; monotone sequence; Oinarov condition; INTEGRAL-OPERATORS; BOUNDEDNESS; COMPACTNESS; SEQUENCES; SPACES;
D O I
10.1186/s13660-015-0843-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new discrete Hardy-type inequality with kernels and monotone functions is proved for the case 1 < q < p < infinity. This result is discussed in a general framework and some applications related to Holder's summation method are pointed out.
引用
收藏
页数:10
相关论文
共 17 条
[1]   Weighted Hardy inequalities for decreasing sequences and functions [J].
Bennett, G ;
Grosse-Erdmann, KG .
MATHEMATISCHE ANNALEN, 2006, 334 (03) :489-531
[2]  
Hardy G.H., 1925, MESS MATH, V54, P150
[3]   Note on a theorem of Hilbert. [J].
Hardy, GH .
MATHEMATISCHE ZEITSCHRIFT, 1920, 6 :314-317
[4]  
Holder O., 1882, MATH ANN, V20, P535
[5]   Boundedness of n-Multiple Discrete Hardy Operators with Weights for 1 &lt; q &lt; p &lt; ∞ [J].
Kalybay, Aigerim ;
Oinarov, Ryskul ;
Temirkhanova, Ainur .
JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
[6]  
Kokilashvili V, 2010, MATH RES DEV, P1
[7]  
Kufner A., 2017, Weighted inequalities of Hardy type, V2nd
[8]  
KUFNER ALOIS, 2007, The Hardy Inequality. About its History and Some Related Results
[9]   Boundedness and compactness of Volterra type integral operators [J].
Oinarov, R. .
SIBERIAN MATHEMATICAL JOURNAL, 2007, 48 (05) :884-896
[10]   Boundedness and compactness in weighted Lebesgue spaces of integral operators with variable integration limits [J].
Oinarov, R. .
SIBERIAN MATHEMATICAL JOURNAL, 2011, 52 (06) :1042-1055