LOCAL EXISTENCE WITH MILD REGULARITY FOR THE BOLTZMANN EQUATION

被引:45
作者
Alexandre, Radjesvarane [1 ,2 ]
Morimoto, Yoshinori [3 ]
Ukai, Seiji
Xu, Chao-Jiang [4 ,5 ]
Yang, Tong [6 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
[2] French Naval Acad Brest Lanveoc, IRENAV Res Inst, F-29290 Brest, France
[3] Kyoto Univ, Grad Sch Human & Environm Studies, Kyoto 6068501, Japan
[4] Univ Rouen, CNRS, UMR 6085, F-76801 St Etienne, France
[5] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[6] City Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
Boltzmann equation; energy estimates; existence of solution; fractional derivatives; LONG-RANGE INTERACTIONS; ANGULAR CUTOFF; WHOLE SPACE; GLOBAL EXISTENCE; BOUNDED SOLUTIONS;
D O I
10.3934/krm.2013.6.1011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Without Grad's angular cutoff assumption, the local existence of classical solutions to the Boltzmann equation is studied. There are two new improvements: the index of Sobolev spaces for the solution is related to the parameter of the angular singularity; moreover, we do not assume that the initial data is close to a global equilibrium. Using the energy method, one important step in the analysis is the study of fractional derivatives of the collision operator and related commutators.
引用
收藏
页码:1011 / 1041
页数:31
相关论文
共 26 条
[11]  
Cercignani Carlo, 1994, Applied Mathematical Sciences, V106
[12]   ON THE CAUCHY-PROBLEM FOR BOLTZMANN EQUATIONS - GLOBAL EXISTENCE AND WEAK STABILITY [J].
DIPERNA, RJ ;
LIONS, PL .
ANNALS OF MATHEMATICS, 1989, 130 (02) :321-366
[13]  
Grad H., 1963, RAREFIED GAS DYN, P26
[14]   GLOBAL CLASSICAL SOLUTIONS OF THE BOLTZMANN EQUATION WITHOUT ANGULAR CUT-OFF [J].
Gressman, Philip T. ;
Strain, Robert M. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 24 (03) :771-847
[15]   The Landau equation in a periodic box [J].
Guo, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 231 (03) :391-434
[16]  
Guo Y, 2010, Q APPL MATH, V68, P143
[17]   Regularity and compactness for Boltzmann collision kernels without angular cut-off [J].
Lions, PL .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (01) :37-41
[18]   Energy method for Boltzmann equation [J].
Liu, TP ;
Yang, T ;
Yu, SH .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 188 (3-4) :178-192
[19]   REGULARITY OF SOLUTIONS TO THE SPATIALLY HOMOGENEOUS BOLTZMANN EQUATION WITHOUT ANGULAR CUTOFF [J].
Morimoto, Yoshinori ;
Ukai, Seiji ;
Xu, Chao-Jiang ;
Yang, Tong .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 24 (01) :187-212
[20]  
PAO YP, 1974, COMMUN PUR APPL MATH, V27, P559, DOI 10.1002/cpa.3160270406