LOCAL EXISTENCE WITH MILD REGULARITY FOR THE BOLTZMANN EQUATION

被引:45
作者
Alexandre, Radjesvarane [1 ,2 ]
Morimoto, Yoshinori [3 ]
Ukai, Seiji
Xu, Chao-Jiang [4 ,5 ]
Yang, Tong [6 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
[2] French Naval Acad Brest Lanveoc, IRENAV Res Inst, F-29290 Brest, France
[3] Kyoto Univ, Grad Sch Human & Environm Studies, Kyoto 6068501, Japan
[4] Univ Rouen, CNRS, UMR 6085, F-76801 St Etienne, France
[5] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[6] City Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
Boltzmann equation; energy estimates; existence of solution; fractional derivatives; LONG-RANGE INTERACTIONS; ANGULAR CUTOFF; WHOLE SPACE; GLOBAL EXISTENCE; BOUNDED SOLUTIONS;
D O I
10.3934/krm.2013.6.1011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Without Grad's angular cutoff assumption, the local existence of classical solutions to the Boltzmann equation is studied. There are two new improvements: the index of Sobolev spaces for the solution is related to the parameter of the angular singularity; moreover, we do not assume that the initial data is close to a global equilibrium. Using the energy method, one important step in the analysis is the study of fractional derivatives of the collision operator and related commutators.
引用
收藏
页码:1011 / 1041
页数:31
相关论文
共 26 条
[1]   Entropy dissipation and long-range interactions [J].
Alexandre, R ;
Desvillettes, L ;
Villani, C ;
Wennberg, B .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 152 (04) :327-355
[2]   The Boltzmann equation without angular cutoff in the whole space: I, Global existence for soft potential [J].
Alexandre, R. ;
Morimoto, Y. ;
Ukai, S. ;
Xu, C. -J. ;
Yang, T. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (03) :915-1010
[3]   The Boltzmann Equation Without Angular Cutoff in the Whole Space: Qualitative Properties of Solutions [J].
Alexandre, R. ;
Morimoto, Y. ;
Ukai, S. ;
Xu, C. -J. ;
Yang, T. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 202 (02) :599-661
[4]   Global Existence and Full Regularity of the Boltzmann Equation Without Angular Cutoff [J].
Alexandre, R. ;
Morimoto, Y. ;
Ukai, S. ;
Xu, C. -J. ;
Yang, T. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 304 (02) :513-581
[5]   THE BOLTZMANN EQUATION WITHOUT ANGULAR CUTOFF IN THE WHOLE SPACE: II, GLOBAL EXISTENCE FOR HARD POTENTIAL [J].
Alexandre, R. ;
Morimoto, Y. ;
Ukai, S. ;
Xu, C-J ;
Yang, T. .
ANALYSIS AND APPLICATIONS, 2011, 9 (02) :113-134
[6]   On the Boltzmann equation for long-range interactions [J].
Alexandre, R ;
Villani, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (01) :30-70
[7]   Some solutions of the Boltzmann equation without angular cutoff [J].
Alexandre, R .
JOURNAL OF STATISTICAL PHYSICS, 2001, 104 (1-2) :327-358
[8]   BOUNDED SOLUTIONS OF THE BOLTZMANN EQUATION IN THE WHOLE SPACE [J].
Alexandre, Radjesvarane ;
Morimoto, Yoshinori ;
Ukai, Seiji ;
Xu, Chao-Jiang ;
Yang, Tong .
KINETIC AND RELATED MODELS, 2011, 4 (01) :17-40
[9]   Regularizing Effect and Local Existence for the Non-Cutoff Boltzmann Equation [J].
Alexandre, Radjesvarane ;
Morimoto, Yoshinori ;
Ukai, Seiji ;
Xu, Chao-Jiang ;
Yang, Tong .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 198 (01) :39-123
[10]  
Cercignani C., 1988, BOLTZMANN EQUATION I