HOMOGENIZATION OF HIGH-CONTRAST AND NON SYMMETRIC CONDUCTIVITIES FOR NON PERIODIC COLUMNAR STRUCTURES

被引:2
作者
Camar-Eddine, Mohamed [1 ,2 ]
Pater, Laurent [2 ]
机构
[1] INSA Rennes, Ctr Math, Rennes, France
[2] Univ Rennes 1, IRMAR, F-35042 Rennes, France
关键词
Homogenization; high-contrast conductivity; strong field; two-phase composites; columnar structures; STRONG-FIELD MAGNETOTRANSPORT; COMPOSITES;
D O I
10.3934/nhm.2013.8.913
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we determine, in dimension three, the effective conductivities of non periodic and high-contrast two-phase cylindrical composites, placed in a constant magnetic field, without any assumption on the geometry of their cross sections. Our method, in the spirit of the H-convergence of Murat-Tartar, is based on a compactness result and the cylindrical nature of the microstructure. The homogenized laws we obtain extend those of the periodic fibre-reinforcing case of [17] to the case of periodic and non periodic and non periodic composites with more general transversal geometries.
引用
收藏
页码:913 / 941
页数:29
相关论文
共 35 条
[1]  
[Anonymous], 2001, ANN SCUOLA NORM-SCI
[2]  
[Anonymous], 1998, TOPICS MATH MODELLIN
[3]  
[Anonymous], 2002, CAMBRIDGE MONOGRAPHS
[4]  
[Anonymous], 1960, Arch. Rational Mech. Anal., DOI DOI 10.1007/BF00252910
[5]  
[Anonymous], 1978, ASYMPTOTIC ANAL PERI
[6]  
Bellieud M., 1998, ANN SCUOLA NORM SUP, V26, P407
[7]  
Bergman D. J., 1983, Annals of the Israel Physical Society, V5, P297
[8]   Recent advances in strong field magneto-transport in a composite medium [J].
Bergman, DJ ;
Strelniker, YM ;
Sarychev, AK .
PHYSICA A, 1997, 241 (1-2) :278-283
[9]   Macroscopic conductivity tensor of a three-dimensional composite with a one- or two-dimensional microstructure [J].
Bergman, DJ ;
Li, XT ;
Strelniker, YM .
PHYSICAL REVIEW B, 2005, 71 (03)
[10]   Magnetotransport in conducting composite films with a disordered columnar microstructure and an in-plane magnetic field [J].
Bergman, DJ ;
Strelniker, YM .
PHYSICAL REVIEW B, 1999, 60 (18) :13016-13027