On the stability of thermoelastic materials

被引:12
|
作者
Abeyaratne, R [1 ]
Knowles, JK
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA
关键词
thermoelasticity; stability; strong ellipticity;
D O I
10.1023/A:1007513631783
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A notion of material stability is introduced and discussed in the setting of nonlinear thermoelasticity. Necessary and sufficient conditions are established for the stability of a general thermoelastic material. The adiabatic theory and the theory that accounts for heat conduction are considered separately.
引用
收藏
页码:199 / 213
页数:15
相关论文
共 50 条
  • [31] On Exponential Stability for Thermoelastic Plates: Comparison and Singular Limits
    Munoz Rivera, J. E.
    Racke, R.
    Sepulveda, M.
    Vera Villagran, O.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (01) : 1045 - 1081
  • [32] On the uniform stability of a thermoelastic Timoshenko system with infinite memory
    Almutairi, Hasan
    Mukiawa, Soh Edwin
    AIMS MATHEMATICS, 2024, 9 (06): : 16260 - 16279
  • [33] Rayleigh surface waves in the theory of thermoelastic materials with voids
    Bucur, Andreea V.
    Passarella, Francesca
    Tibullo, Vincenzo
    MECCANICA, 2014, 49 (09) : 2069 - 2078
  • [34] Theory of thin thermoelastic rods made of porous materials
    Birsan, Mircea
    Altenbach, Holm
    ARCHIVE OF APPLIED MECHANICS, 2011, 81 (10) : 1365 - 1391
  • [35] Transient Thermoelastic and Piezothermoelastic Problems of Functionally Graded Materials
    Ootao, Yoshihiro
    JOURNAL OF THERMAL STRESSES, 2009, 32 (6-7) : 656 - 697
  • [37] Stability of a thermoelastic laminated system subject to a neutral delay
    Seghour, Lamia
    Tatar, Nasser-eddine
    Berkani, Amirouche
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (01) : 281 - 304
  • [38] Rayleigh surface waves in the theory of thermoelastic materials with voids
    Andreea V. Bucur
    Francesca Passarella
    Vincenzo Tibullo
    Meccanica, 2014, 49 : 2069 - 2078
  • [39] Structural stability for a linear system of thermoelastic plate equations
    Meyvaci, M.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 242 : 664 - 668
  • [40] Finite propagation speed of semilinear thermoelastic materials with microstretch
    Yang, Lin
    Chen, Zhao-Hui
    Huang, Li-Hong
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2008, 35 (12): : 54 - 57