共 50 条
Mechanisms of reduced solute diffusivity at nanoconfined solid-liquid interface
被引:4
作者:
Mahadevan, T.
[1
]
Kojic, M.
[1
]
Ferrari, M.
[1
]
Ziemys, A.
[1
]
机构:
[1] Methodist Hosp, Res Inst, Houston, TX 77030 USA
来源:
基金:
美国国家卫生研究院;
关键词:
Interface;
Diffusion;
Thermodynamics;
Adsorption;
Eyring equation;
ENTHALPY-ENTROPY COMPENSATION;
ANOMALOUS DIFFUSION;
MOLECULAR-DYNAMICS;
NEUTRON-SCATTERING;
GLASS-TRANSITION;
WATER;
SILICA;
NANOCHANNELS;
ADSORPTION;
SURFACE;
D O I:
10.1016/j.chemphys.2013.05.010
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
We report results from molecular simulations that reveal the causes of reduced diffusivity at solid-liquid interfaces in the presence of nanoscale confinement. The diffusion of a 2 M glucose solution was simulated inside a 10 nm silica channel together with the calculated thermodynamic properties of diffusion. A strong energy-entropy compensation mechanism was found at the interface with a free energy minimum of -0.6 kcal/mol. Using the Eyring equation the average jump length was reduced by 15% at interface. The complete loss of solute diffusivity at silica surface was explained by the substantial loss of the probability of productive displacements. The results suggested that glucose molecule diffusivity close to the surface might be related to a stiffer cage of the hydration shell, which affects the probability of cage breaking. These results help in understanding of diffusion mechanisms at interface and predicting mass transport in nanoconfinement for engineering and biomedical applications. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:15 / 21
页数:7
相关论文