A DWT-Entropy-ANN Based Architecture for Epilepsy Diagnosis Using EEG Signals

被引:0
作者
AlSharabi, Khalil [1 ]
Ibrahim, Sutrisno [1 ]
Djemal, Ridha [1 ]
Alsuwailem, Abdullah [1 ]
机构
[1] King Saud Univ, Coll Engn, Dept Elect Engn, POB 800, Riyadh 11421, Saudi Arabia
来源
2016 2ND INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP) | 2016年
关键词
epilepsy; computer aided diagnosis; EEG; DWT; entropy; ANN; CLASSIFICATION; SEIZURES;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Electroencephalogram (EEG) is one the most common tools for epilepsy diagnosis and analysis. Currently, epilepsy diagnosis is still mainly performed by a neurologist through manual or visual inspection of EEG signals. In this article, we develop a computer aided diagnosis (CAD) for epilepsy based on discrete wavelet transform (DWT), Shannon entropy and feed-forward neural network (FFNN). DWT decompose EEG signals into several frequency sub-bands such as delta, theta, alpha, beta and gamma. Shannon entropy extract the EEG features from each these frequency sub-bands. Finally, FFNN classifies the corresponding EEG signals into "normal" or "epileptic" class based on the extracted features. Our experimental results using publicly available University of Bonn EEG dataset show perfect accuracy (100%).
引用
收藏
页码:283 / 286
页数:4
相关论文
共 50 条
  • [41] The application of neural networks in classification of epilepsy using EEG signals
    Sahin, Cenk
    Ogulata, Seyfettin Noyan
    Aslan, Kezban
    Bozdemir, Hacer
    ADVANCES IN BRAIN, VISION, AND ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2007, 4729 : 499 - +
  • [42] Epilepsy Detection by Processing of EEG signals using LabVIEW Simulation
    Hallur, S. N.
    Torse, D. A.
    Aithal, V. K.
    Santaji, S. S.
    2018 3RD INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER, AND OPTIMIZATION TECHNIQUES (ICEECCOT - 2018), 2018, : 1101 - 1106
  • [43] Detecting Seizures From EEG Signals Using the Entropy of Visibility Heights of Hierarchical Neighbors
    Zeng, Ming
    Zhao, Chun-Yu
    Meng, Qing-Hao
    IEEE ACCESS, 2019, 7 : 7889 - 7896
  • [44] Automated Epilepsy Diagnosis Using Interictal Scalp EEG
    Bao, Forrest Sheng
    Gao, Jue-Ming
    Hu, Jing
    Lie, Donald Y. C.
    Zhang, Yuanlin
    Oommen, K. J.
    2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, : 6603 - +
  • [45] Identification of epilepsy from intracranial EEG signals by using different neural network models
    Gong, Chen
    Zhang, Xiaoxiong
    Niu, Yunyun
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2020, 87
  • [46] Automated diagnosis of epilepsy using EEG power spectrum
    Kerr, Wesley T.
    Anderson, Ariana
    Lau, Edward P.
    Cho, Andrew Y.
    Xia, Hongjing
    Bramen, Jennifer
    Douglas, Pamela K.
    Braun, Eric S.
    Stern, John M.
    Cohen, Mark S.
    EPILEPSIA, 2012, 53 (11) : e189 - e192
  • [47] Higuchi versus Katz fractal dimensions based features extraction method for epilepsy diagnosis using EEG signals
    Brari, Zayneb
    Bouzouita, Ines
    Belghith, Safya
    2024 IEEE 7TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES, SIGNAL AND IMAGE PROCESSING, ATSIP 2024, 2024, : 588 - 593
  • [48] DWT based color image watermarking using maximum entropy
    Sanjay Kumar
    Binod Kumar Singh
    Multimedia Tools and Applications, 2021, 80 : 15487 - 15510
  • [49] Wavelet feature selection of audio and imagined/vocalized EEG signals for ANN based multimodal ASR system
    Mini, P. P.
    Thomas, Tessamma
    Gopikakumari, R.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 63
  • [50] A Comparative Approach for MI-Based EEG Signals Classification Using Energy, Power and Entropy
    Roy, G.
    Bhoi, A. K.
    Bhaumik, S.
    IRBM, 2022, 43 (05) : 434 - 446