Stein-Weiss inequalities for radial local Morrey spaces

被引:9
作者
Ho, Kwok-Pun [1 ]
机构
[1] Educ Univ Hong Kong, Dept Math & Informat Technol, Tai Po, 10 Lo Ping Rd, Hong Kong, Peoples R China
关键词
Stein-Weiss inequalities; fractional integral operators; local Morrey spaces; FRACTIONAL INTEGRAL-OPERATORS; NORM INEQUALITIES; SUFFICIENT CONDITIONS; UNIQUE CONTINUATION; MAXIMAL OPERATOR; 2-WEIGHT NORM; BOUNDEDNESS; SOBOLEV; COMMUTATORS; POTENTIALS;
D O I
10.4171/PM/2037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper establishes a generalization of the celebrated Stein-Weiss inequalities for the fractional integral operators on radial functions in local Morrey spaces. We find that some conditions can be relaxed for the Stein-Weiss inequalities on radial local Morrey spaces.
引用
收藏
页码:301 / 310
页数:10
相关论文
共 35 条
[1]  
Adams, 2015, MORREY SPACES
[2]  
ADAMS DR, 1975, DUKE MATH J, V42, P765, DOI 10.1215/S0012-7094-75-04265-9
[3]  
[Anonymous], 2004, HARDY OPERATORS FUNC, DOI DOI 10.1007/978-3-662-07731-3
[4]   Boundedness of the fractional maximal operator in local Morrey-type spaces [J].
Burenkov, V. I. ;
Gogatishvili, A. ;
Guliyev, V. S. ;
Mustafayev, R. Ch. .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (8-10) :739-758
[5]   Boundedness of the Riesz Potential in Local Morrey-Type Spaces [J].
Burenkov, Victor I. ;
Gogatishvili, Amiran ;
Guliyev, Vagif S. ;
Mustafayev, Rza Ch .
POTENTIAL ANALYSIS, 2011, 35 (01) :67-87
[6]   Necessary and Sufficient Conditions for the Boundedness of the Riesz Potential in Local Morrey-type Spaces [J].
Burenkov, Victor I. ;
Guliyev, Vagif S. .
POTENTIAL ANALYSIS, 2009, 30 (03) :211-249
[7]   Necessary and sufficient conditions for the boundedness of fractional maximal operators in local Morrey-type spaces [J].
Burenkov, Viktor I. ;
Guliyev, Huseyn V. ;
Guliyev, Vagif S. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 208 (01) :280-301
[8]   HARNACKS INEQUALITY AND MEAN-VALUE INEQUALITIES FOR SOLUTIONS OF DEGENERATE ELLIPTIC-EQUATIONS [J].
CHANILLO, S ;
WHEEDEN, RL .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1986, 11 (10) :1111-1134
[9]   UNIQUE CONTINUATION FOR DELTA+V AND THE C-FEFFERMAN-PHONG CLASS [J].
CHANILLO, S ;
SAWYER, E .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 318 (01) :275-300
[10]  
Cruz-Uribe D, 2000, INDIANA U MATH J, V49, P697