Implementation of the extended finite element method for coupled dynamic thermoelastic fracture of a functionally graded cracked layer

被引:17
作者
Rokhi, Masoud Mahdizadeh [1 ]
Shariati, Mahmoud [1 ]
机构
[1] Shahrood Univ Technol, Dept Mech Engn, Shahrood 3619995161, Semnan, Iran
关键词
Coupled thermoelasticity; Fracture; Thermal shock; Crack propagation; FGMs; STRESS INTENSITY FACTOR; PLATE; GROWTH;
D O I
10.1007/s40430-013-0015-0
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The effect of thermal shock on a cracked functionally graded material (FGM) layer is considered using the extended finite element method. Classical coupled thermoelastic equations are used in the calculations. The coupled dynamical system of equations obtained from the extended finite element discretization is solved by the Newmark method in the time domain. Micromechanical models for conventional composites are used to estimate the material properties of functionally graded layer. The interaction integral is then employed to calculate the dynamic thermal stress intensity factors (SIFs) at each time step. The effects of initial crack angle and volume fraction profiles of FGMs on SIFs are studied. Also crack propagation phenomenon is investigated in this paper. We have used MATLAB software to do the different stages of simulation from mesh generation to numerical computation of SIFs. Some numerical examples are implemented to investigate the validity and accuracy of attained results.
引用
收藏
页码:69 / 81
页数:13
相关论文
共 50 条
[31]   Numerical study on deformations in a cracked viscoelastic body with the extended finite element method [J].
Zhang, H. H. ;
Rong, G. ;
Li, L. X. .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2010, 34 (06) :619-624
[32]   Simulation of dynamic and static thermoelastic fracture problems by extended nodal gradient finite elements [J].
Minh Ngoc Nguyen ;
Tinh Quoc Bui ;
Nha Thanh Nguyen ;
Thien Tich Truong ;
Le Van Lich .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2017, 134 :370-386
[33]   Extended finite element method for dynamic fracture of piezo-electric materials [J].
Nguyen-Vinh, H. ;
Bakar, I. ;
Msekh, M. A. ;
Song, J. -H. ;
Muthu, J. ;
Zi, G. ;
Le, P. ;
Bordas, S. P. A. ;
Simpson, R. ;
Natarajan, S. ;
Lahmer, T. ;
Rabczuk, T. .
ENGINEERING FRACTURE MECHANICS, 2012, 92 :19-31
[34]   Finite Element Method to a Generalized Thermoelastic Coupled Problem for a Strip [J].
He, Tianhu ;
Guan, Mingzhi .
PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION (ICMS2009), VOL 2, 2009, :229-234
[35]   Galerkin finite block method with Lagrange multipliers method for cracked solids in functionally graded materials [J].
Zhou, Y. R. ;
Huang, W. ;
Yang, J. J. ;
Wen, P. H. .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2024, 163 :606-615
[36]   Dynamic crack propagation analysis of orthotropic media by the extended finite element method [J].
Motamedi, D. ;
Mohammadi, S. .
INTERNATIONAL JOURNAL OF FRACTURE, 2010, 161 (01) :21-39
[37]   The eXtended finite element method for cracked hyperelastic materials: A convergence study [J].
Karoui, A. ;
Mansouri, K. ;
Renard, Y. ;
Arfaoui, M. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2014, 100 (03) :222-242
[38]   Vibration analysis of cracked plates using the extended finite element method [J].
Bachene, M. ;
Tiberkak, R. ;
Rechak, S. .
ARCHIVE OF APPLIED MECHANICS, 2009, 79 (03) :249-262
[39]   High-order extended finite element method for cracked domains [J].
Laborde, P ;
Pommier, J ;
Renard, Y ;
Salaün, M .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2005, 64 (03) :354-381
[40]   Finite element method for crack problems in viscoelastic functionally graded materials [J].
Peng, F. (fanpeng@hnu.edu.cn), 1600, Chinese Society of Theoretical and Applied Mechanics (45) :359-366