Handling Missing Data in Instrumental Variable Methods for Causal Inference

被引:3
|
作者
Kennedy, Edward H. [1 ]
Mauro, Jacqueline A. [1 ]
Daniels, Michael J. [2 ]
Burns, Natalie [2 ]
Small, Dylan S. [3 ]
机构
[1] Carnegie Mellon Univ, Dept Stat & Data Sci, Pittsburgh, PA 15213 USA
[2] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
[3] Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
来源
ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 6 | 2019年 / 6卷
基金
美国国家卫生研究院;
关键词
causal inference; instrumental variable; missing data; observational study; semiparametric efficiency; DOUBLY ROBUST ESTIMATION; MENDELIAN RANDOMIZATION; REGRESSION; MODELS; IDENTIFICATION; ESTIMATORS; IMPUTATION;
D O I
10.1146/annurev-statistics-031017-100353
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In instrumental variable studies, missing instrument data are very common. For example, in the Wisconsin Longitudinal Study, one can use genotype data as a Mendelian randomization-style instrument, but this information is often missing when subjects do not contribute saliva samples or when the genotyping platform output is ambiguous. Here we review missing at random assumptions one can use to identify instrumental variable causal effects, and discuss various approaches for estimation and inference. We consider likelihood-based methods, regression and weighting estimators, and doubly robust estimators. The likelihood-based methods yield the most precise inference and are optimal under the model assumptions, while the doubly robust estimators can attain the nonparametric efficiency bound while allowing flexible nonparametric estimation of nuisance functions (e.g., instrument propensity scores). The regression and weighting estimators can sometimes be easiest to describe and implement. Our main contribution is an extensive review of this wide array of estimators under varied missing-at-random assumptions, along with discussion of asymptotic properties and inferential tools. We also implement many of the estimators in an analysis of the Wisconsin Longitudinal Study, to study effects of impaired cognitive functioning on depression.
引用
收藏
页码:125 / 148
页数:24
相关论文
共 50 条
  • [31] A nonparametric binomial likelihood approach for causal inference in instrumental variable models
    Lee, Kwonsang
    Bhattacharya, Bhaswar B.
    Qin, Jing
    Small, Dylan S.
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2023, 52 (04) : 1055 - 1077
  • [32] Methods for handling missing data in palliative care research
    Fielding, S.
    Fayers, P. M.
    Loge, J. H.
    Jordhoy, M. S.
    Kaasa, S.
    PALLIATIVE MEDICINE, 2006, 20 (08) : 791 - 798
  • [33] Data integration in causal inference
    Shi, Xu
    Pan, Ziyang
    Miao, Wang
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2023, 15 (01)
  • [34] Alcohol Drinking and Amyotrophic Lateral Sclerosis: An Instrumental Variable Causal Inference
    Yu, Xinghao
    Wang, Ting
    Chen, Yiming
    Shen, Ziyuan
    Gao, Yixing
    Xiao, Lishun
    Zheng, Junnian
    Zeng, Ping
    ANNALS OF NEUROLOGY, 2020, 88 (01) : 195 - 198
  • [35] Causal inference with observational data
    Nichols, Austin
    STATA JOURNAL, 2007, 7 (04) : 507 - 541
  • [36] Estimation of causal quantile effects with a binary instrumental variable and censored data
    Wei, Bo
    Peng, Limin
    Zhang, Mei-Jie
    Fine, Jason P.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2021, 83 (03) : 559 - 578
  • [38] Implementation of Instrumental Variable Bounds for Data Missing Not at Random
    Marden, Jessica R.
    Wang, Linbo
    Tchetgen, Eric J. Tchetgen
    Walter, Stefan
    Glymour, M. Maria
    Wirth, Kathleen E.
    EPIDEMIOLOGY, 2018, 29 (03) : 364 - 368
  • [39] Instrumental Variable Methods for Conditional Effects and Causal Interaction in Voter Mobilization Experiments
    Blackwell, Matthew
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) : 590 - 599
  • [40] Mendelian randomization: causal inference leveraging genetic data
    Chen, Lane G.
    Tubbs, Justin D.
    Liu, Zipeng
    Thach, Thuan-Quoc
    Sham, Pak C.
    PSYCHOLOGICAL MEDICINE, 2024, 54 (08) : 1461 - 1474