Handling Missing Data in Instrumental Variable Methods for Causal Inference

被引:3
|
作者
Kennedy, Edward H. [1 ]
Mauro, Jacqueline A. [1 ]
Daniels, Michael J. [2 ]
Burns, Natalie [2 ]
Small, Dylan S. [3 ]
机构
[1] Carnegie Mellon Univ, Dept Stat & Data Sci, Pittsburgh, PA 15213 USA
[2] Univ Florida, Dept Stat, Gainesville, FL 32611 USA
[3] Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
来源
ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, VOL 6 | 2019年 / 6卷
基金
美国国家卫生研究院;
关键词
causal inference; instrumental variable; missing data; observational study; semiparametric efficiency; DOUBLY ROBUST ESTIMATION; MENDELIAN RANDOMIZATION; REGRESSION; MODELS; IDENTIFICATION; ESTIMATORS; IMPUTATION;
D O I
10.1146/annurev-statistics-031017-100353
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In instrumental variable studies, missing instrument data are very common. For example, in the Wisconsin Longitudinal Study, one can use genotype data as a Mendelian randomization-style instrument, but this information is often missing when subjects do not contribute saliva samples or when the genotyping platform output is ambiguous. Here we review missing at random assumptions one can use to identify instrumental variable causal effects, and discuss various approaches for estimation and inference. We consider likelihood-based methods, regression and weighting estimators, and doubly robust estimators. The likelihood-based methods yield the most precise inference and are optimal under the model assumptions, while the doubly robust estimators can attain the nonparametric efficiency bound while allowing flexible nonparametric estimation of nuisance functions (e.g., instrument propensity scores). The regression and weighting estimators can sometimes be easiest to describe and implement. Our main contribution is an extensive review of this wide array of estimators under varied missing-at-random assumptions, along with discussion of asymptotic properties and inferential tools. We also implement many of the estimators in an analysis of the Wisconsin Longitudinal Study, to study effects of impaired cognitive functioning on depression.
引用
收藏
页码:125 / 148
页数:24
相关论文
共 50 条
  • [21] Discovering Ancestral Instrumental Variables for Causal Inference From Observational Data
    Cheng, Debo
    Li, Jiuyong
    Liu, Lin
    Yu, Kui
    Le, Thuc Duy
    Liu, Jixue
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (08) : 11542 - 11552
  • [22] Bayesian jackknife empirical likelihood-based inference for missing data and causal inference
    Chen, Sixia
    Wang, Yuke
    Zhao, Yichuan
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2025, 53 (01):
  • [23] Bayesian inference for Common cause failure rate based on causal inference with missing data
    Nguyen, H. D.
    Gouno, E.
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2020, 197
  • [24] IDENTIFICATION AND INFERENCE FOR MARGINAL AVERAGE TREATMENT EFFECT ON THE TREATED WITH AN INSTRUMENTAL VARIABLE
    Liu, Lan
    Miao, Wang
    Sun, Baoluo
    Robins, James
    Tchetgen, Eric Tchetgen
    STATISTICA SINICA, 2020, 30 (03) : 1517 - 1541
  • [25] Coarsened Propensity Scores and Hybrid Estimators for Missing Data and Causal Inference
    Zhou, Jie
    Zhang, Zhiwei
    Li, Zhaohai
    Zhang, Jun
    INTERNATIONAL STATISTICAL REVIEW, 2015, 83 (03) : 449 - 471
  • [26] Outlier robust inference in the instrumental variable model with applications to causal effects
    Klooster, Jens
    Zhelonkin, Mikhail
    JOURNAL OF APPLIED ECONOMETRICS, 2024, 39 (01) : 86 - 106
  • [27] Identifying missing data handling methods with text mining
    Boros, Krisztian
    Kmetty, Zoltan
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2024,
  • [28] SEMIPARAMETRIC INFERENCE OF CAUSAL EFFECT WITH NONIGNORABLE MISSING CONFOUNDERS
    Sun, Zhaohan
    Liu, Lan
    STATISTICA SINICA, 2021, 31 (04) : 1669 - 1688
  • [29] Causal Inference with Treatment Measurement Error: A Nonparametric Instrumental Variable Approach
    Zhu, Yuchen
    Gultchin, Limor
    Gretton, Arthur
    Kusner, Matt
    Silva, Ricardo
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, VOL 180, 2022, 180 : 2414 - 2424
  • [30] A nonparametric binomial likelihood approach for causal inference in instrumental variable models
    Kwonsang Lee
    Bhaswar B. Bhattacharya
    Jing Qin
    Dylan S. Small
    Journal of the Korean Statistical Society, 2023, 52 : 1055 - 1077