Shear Flow of an Electrically Charged Fluid by Ion Concentration Polarization: Scaling Laws for Electroconvective Vortices

被引:144
作者
Kwak, Rhokyun [1 ]
Van Sang Pham [2 ]
Lim, Kian Meng [2 ]
Han, Jongyoon [3 ,4 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] Natl Univ Singapore, Singapore MIT Alliance, Singapore 117576, Singapore
[3] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[4] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
关键词
EXCHANGE MEMBRANE; CONVECTION;
D O I
10.1103/PhysRevLett.110.114501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider electroconvective fluid flows initiated by ion concentration polarization (ICP) under pressure-driven shear flow, a scenario often found in many electrochemical devices and systems. Combining scaling analysis, experiment, and numerical modeling, we reveal unique behaviors of ICP under shear flow: a unidirectional vortex structure, its height selection, and vortex advection. Determined by both the external pressure gradient and the electric body force, the dimensionless height of the sheared electroconvective vortex is shown to scale as (phi(2)/U-HP)(1/3), which is a clear departure from the previous diffusion-drift model prediction. To the best of our knowledge, this is the first microscopic characterization of ion concentration polarization under shear flow, and it firmly establishes electroconvection as the mechanism for an overlimiting current in realistic, large-area ion exchange membrane systems such as electrodialysis. The new scaling law has significant implications on the optimization of electrodialysis and other electrochemical systems. DOI: 10.1103/PhysRevLett.110.114501
引用
收藏
页数:5
相关论文
共 25 条
[1]   Current-Induced Membrane Discharge [J].
Andersen, M. B. ;
van Soestbergen, M. ;
Mani, A. ;
Bruus, H. ;
Biesheuvel, P. M. ;
Bazant, M. Z. .
PHYSICAL REVIEW LETTERS, 2012, 109 (10)
[2]   Morphology and microtopology of cation-exchange polymers and the origin of the overlimiting current [J].
Balster, J. ;
Yildirim, M. H. ;
Stamatialis, D. F. ;
Ibanez, R. ;
Lammertink, R. G. H. ;
Jordan, V. ;
Wessling, M. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (09) :2152-2165
[3]   Characterization of ion-exchange membrane materials: Properties vs structure [J].
Berezina, N. P. ;
Kononenko, N. A. ;
Dyomina, O. A. ;
Gnusin, N. P. .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2008, 139 (1-2) :3-28
[4]   Electrically driven convection in a thin annular film undergoing circular Couette flow [J].
Daya, ZA ;
Deyirmenjian, VB ;
Morris, SW .
PHYSICS OF FLUIDS, 1999, 11 (12) :3613-3628
[5]   Annular electroconvection with shear [J].
Daya, ZA ;
Deyirmenjian, VB ;
Morris, SW ;
de Bruyn, JR .
PHYSICAL REVIEW LETTERS, 1998, 80 (05) :964-967
[6]   Linear and nonlinear evolution and diffusion layer selection in electrokinetic instability [J].
Demekhin, E. A. ;
Shelistov, V. S. ;
Polyanskikh, S. V. .
PHYSICAL REVIEW E, 2011, 84 (03)
[7]   Overlimiting Current in a Microchannel [J].
Dydek, E. Victoria ;
Zaltzman, Boris ;
Rubinstein, Isaak ;
Deng, D. S. ;
Mani, Ali ;
Bazant, Martin Z. .
PHYSICAL REVIEW LETTERS, 2011, 107 (11)
[8]   Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel [J].
Kim, Sung Jae ;
Wang, Ying-Chih ;
Lee, Jeong Hoon ;
Jang, Hongchul ;
Han, Jongyoon .
PHYSICAL REVIEW LETTERS, 2007, 99 (04)
[9]  
Kim SJ, 2010, NAT NANOTECHNOL, V5, P297, DOI [10.1038/nnano.2010.34, 10.1038/NNANO.2010.34]
[10]   Nanofluidic concentration devices for biomolecules utilizing ion concentration polarization: theory, fabrication, and applications [J].
Kim, Sung Jae ;
Song, Yong-Ak ;
Han, Jongyoon .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (03) :912-922