Differential Forms in Hermitean Clifford Analysis

被引:0
作者
Brackx, F. [1 ]
De Schepper, H. [1 ]
Eelbode, D.
Soucek, V. [2 ]
机构
[1] Univ Ghent, Clifford Res Grp, Dept Math Anal, Fac Engn, Galglaan 2, B-9000 Ghent, Belgium
[2] Charles Sturt Prague, Fac Math & Phys, Math Inst, Prague 18675, Czech Republic
来源
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS | 2008年 / 1048卷
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
After identification of multivector functions and differential forms, methods from flat Kahlerian geometry are used to gain deeper insights in the structure of the Hermitean monogenic systems.
引用
收藏
页码:642 / +
页数:3
相关论文
共 50 条
[31]   Orthogonality of the generalized Hermitean Clifford-Hermite polynomials [J].
Brackx, Fred ;
De Schepper, Hennie ;
De Schepper, Nele ;
Eelbode, David ;
Sommen, Frank .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2008, 19 (10) :687-707
[32]   Gel'fand-Tsetlin Procedure for the Construction of Orthogonal Bases in Hermitean Clifford Analysis [J].
Brackx, Fred ;
De Schepper, Hennie ;
Lavicka, Roman ;
Soucek, Vladimir .
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 :1508-+
[33]   MODULAR LATTICES AND HERMITEAN FORMS [J].
MORESI, R .
ALGEBRA UNIVERSALIS, 1986, 22 (2-3) :279-297
[34]   The generalized Hermitean Clifford-Hermite continuous wavelet transform [J].
Brackx, F. ;
De Schepper, H. ;
De Schepper, N. ;
Sommen, F. .
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2007, 936 :721-+
[35]   Generalized Hermitean Clifford-Hermite polynomials and the associated wavelet transform [J].
Brackx, Fred ;
De Schepper, Hennie ;
De Schepper, Nele ;
Sommen, Frank .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (05) :606-630
[36]   From Hermitean Clifford Analysis to Subelliptic Dirac Operators on Odd Dimensional Spheres and Other CR Manifolds [J].
Cerejeiras, P. ;
Kahler, U. ;
Ryan, J. .
CLIFFORD ANALYSIS AND RELATED TOPICS: IN HONOR OF PAUL A. M. DIRAC, CART 2014, 2018, 260 :39-51
[37]   A theory of modular forms in Clifford analysis, their applications and perspectives [J].
Krausshar, RS .
ADVANCES IN ANALYSIS AND GEOMETRY: NEW DEVELOPMENTS USING CLIFFORD ALGEBRAS, 2004, :311-343
[38]   Some partial differential equations in Clifford analysis [J].
Obolashvili, E .
COMPLEX METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 1999, 6 :245-261
[39]   Isomorphisms of Partial Differential Equations in Clifford Analysis [J].
Alfonso Santiesteban, Daniel ;
Abreu Blaya, Ricardo .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2022, 32 (01)
[40]   Isomorphisms of Partial Differential Equations in Clifford Analysis [J].
Daniel Alfonso Santiesteban ;
Ricardo Abreu Blaya .
Advances in Applied Clifford Algebras, 2022, 32