Differential Forms in Hermitean Clifford Analysis

被引:0
作者
Brackx, F. [1 ]
De Schepper, H. [1 ]
Eelbode, D.
Soucek, V. [2 ]
机构
[1] Univ Ghent, Clifford Res Grp, Dept Math Anal, Fac Engn, Galglaan 2, B-9000 Ghent, Belgium
[2] Charles Sturt Prague, Fac Math & Phys, Math Inst, Prague 18675, Czech Republic
来源
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS | 2008年 / 1048卷
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
After identification of multivector functions and differential forms, methods from flat Kahlerian geometry are used to gain deeper insights in the structure of the Hermitean monogenic systems.
引用
收藏
页码:642 / +
页数:3
相关论文
共 50 条
[21]   Clifford systems, Clifford structures, and their canonical differential forms [J].
Boydon, Kai Brynne M. ;
Piccinni, Paolo .
ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2021, 91 (01) :101-115
[22]   Hermitean Clifford-Hermite polynomials [J].
Brackx, F. ;
De Schepper, H. ;
De Schepper, N. ;
Sommen, F. .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2007, 17 (03) :311-330
[23]   Hermitean Clifford-Hermite Polynomials [J].
F. Brackx ;
H. De Schepper ;
N. De Schepper ;
F. Sommen .
Advances in Applied Clifford Algebras, 2007, 17 :311-330
[24]   Hlder Norm Estimate for a Hilbert Transform in Hermitean Clifford Analysis [J].
Ricardo ABREU-BLAYA ;
Juan BORY-REYES ;
Fred BRACKX ;
Hennie DE SCHEPPER ;
Frank SOMMEN .
Acta Mathematica Sinica,English Series, 2012, 28 (11) :2289-2300
[25]   Hlder Norm Estimate for a Hilbert Transform in Hermitean Clifford Analysis [J].
Ricardo ABREUBLAYA ;
Juan BORYREYES ;
Fred BRACKX ;
Hennie DE SCHEPPER ;
Frank SOMMEN .
Acta Mathematica Sinica, 2012, 28 (11) :2289-2300
[26]   On Cauchy and Martinelli-Bochner integral formulae in Hermitean Clifford analysis [J].
F. Brackx ;
B. De Knock ;
H. De Schepper ;
F. Sommen .
Bulletin of the Brazilian Mathematical Society, New Series, 2009, 40 :395-416
[27]   Hölder norm estimate for a Hilbert transform in Hermitean Clifford analysis [J].
Ricardo Abreu-Blaya ;
Juan Bory-Reyes ;
Fred Brackx ;
Hennie De Schepper ;
Frank Sommen .
Acta Mathematica Sinica, English Series, 2012, 28 :2289-2300
[28]   Plemelj Formula for Bergman Integral on Unit Ball in Hermitean Clifford Analysis [J].
Ku, Min ;
He, Fuli .
NEW TRENDS IN ANALYSIS AND INTERDISCIPLINARY APPLICATIONS, 2017, :207-214
[29]   On Cauchy and Martinelli-Bochner integral formulae in Hermitean Clifford analysis [J].
Brackx, F. ;
De Knock, B. ;
De Schepper, H. ;
Sommen, F. .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2009, 40 (03) :395-416
[30]   Gel'fand-Tsetlin bases of orthogonal polynomials in Hermitean Clifford analysis [J].
Brackx, F. ;
De Schepper, H. ;
Lavicka, R. ;
Soucek, V. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (17) :2167-2180