Polymer composites with enhanced thermal conductivity via oriented boron nitride and alumina hybrid fillers assisted by 3-D printing

被引:99
作者
Liu, Mengjing [1 ]
Chiang, Sun-Wai [1 ]
Chu, Xiaodong [1 ]
Li, Jia [1 ]
Gan, Lin [1 ]
He, Yanbing [1 ]
Li, Baohua [1 ]
Kang, Feiyu [1 ]
Du, Hongda [1 ]
机构
[1] Tsinghua Shenzhen Int Grad Sch, Guangdong Prov Key Lab Thermal Management Engn &, Shenzhen 518055, Peoples R China
关键词
Thermal conductivity; Hybrid fillers; 3-D printing; Thermal interface resistance; NANOTUBES TERNARY COMPOSITES; MECHANICAL-PROPERTIES; GRAPHENE NANOSHEETS; EPOXY COMPOSITES; ORIENTATION; NETWORK; MICRO; FILMS; BN; NANOCOMPOSITES;
D O I
10.1016/j.ceramint.2020.05.096
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Herein, oriented boron nitride (BN)/alumina (Al2O3)/polydimethylsiloxane (PDMS) composites were obtained by filler orientation due to the shear-inducing effect via 3-D printing. The oriented BN platelets acted as a rapid highway for heat transfer in the matrix and resulted in a significant increase in the thermal conductivity along the orientation direction. Extra addition of spherical Al2O3 enhanced the fillers networks and resulted in the dramatic growth of slurry viscosity. This, together with filler orientation induced the synergism and provided large increases in the thermal conductivity. A high orientation degree of 90.65% and in-plane thermal conductivity of 3.64 W/(m.K) were realized in the composites with oriented 35 wt% BN and 30 wt% Al2O3 hybrid fillers. We attributed the influence of filler orientation and hybrid fillers on the thermal conductivity to the decrease of thermal interface resistance of composites and proposed possible theoretical models for the thermal conductivity enhancement mechanisms.
引用
收藏
页码:20810 / 20818
页数:9
相关论文
共 52 条
[1]   Thermal Conductivity of Polymer Nanocomposites Made With Carbon Nanofibers [J].
Agarwal, Sushant ;
Khan, M. Masud K. ;
Gupta, Rakesh K. .
POLYMER ENGINEERING AND SCIENCE, 2008, 48 (12) :2474-2481
[2]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/NMAT3064, 10.1038/nmat3064]
[3]   The synergistic effects of the micro-BN and nano-Al2O3 in micro-nano composites on enhancing the thermal conductivity for insulating epoxy resin [J].
Bian, Wancong ;
Yao, Tong ;
Chen, Ming ;
Zhang, Cheng ;
Shao, Tao ;
Yang, Ying .
COMPOSITES SCIENCE AND TECHNOLOGY, 2018, 168 :420-428
[4]   Thermal conductivity and interfacial resistance in single-wall carbon nanotube epoxy composites [J].
Bryning, MB ;
Milkie, DE ;
Islam, MF ;
Kikkawa, JM ;
Yodh, AG .
APPLIED PHYSICS LETTERS, 2005, 87 (16) :1-3
[5]   Review of thermal conductivity in composites: Mechanisms, parameters and theory [J].
Burger, N. ;
Laachachi, A. ;
Ferriol, M. ;
Lutz, M. ;
Toniazzo, V. ;
Ruch, D. .
PROGRESS IN POLYMER SCIENCE, 2016, 61 :1-28
[6]   Largely enhanced thermal conductivity of HDPE/boron nitride/carbon nanotubes ternary composites via filler network-network synergy and orientation [J].
Che, Junjin ;
Jing, Mengfan ;
Liu, Dingyao ;
Wang, Ke ;
Fu, Qiang .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2018, 112 :32-39
[7]   Largely improved thermal conductivity of HDPE/expanded graphite/carbon nanotubes ternary composites via filler network-network synergy [J].
Che, Junjin ;
Wu, Kai ;
Lin, Yunjie ;
Wang, Ke ;
Fu, Qiang .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2017, 99 :32-40
[8]   Thermal conductivity of polymer-based composites: Fundamentals and applications [J].
Chen, Hongyu ;
Ginzburg, Valeriy V. ;
Yang, Jian ;
Yang, Yunfeng ;
Liu, Wei ;
Huang, Yan ;
Du, Libo ;
Chen, Bin .
PROGRESS IN POLYMER SCIENCE, 2016, 59 :41-85
[9]   Preparation and properties of boron nitride nanosheets/cellulose nanofiber shear-oriented films with high thermal conductivity [J].
Chen, Lu ;
Xiao, Chao ;
Tang, Yunlu ;
Zhang, Xian ;
Zheng, Kang ;
Tian, Xingyou .
CERAMICS INTERNATIONAL, 2019, 45 (10) :12965-12974
[10]   Model and simulation predictions of the thermal conductivity of compact random nanoparticle composites [J].
Chuang, Pi-Yueh ;
Huang, Mei-Jiau .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 61 :490-498