CATEGORIFICATION OF QUANTUM GENERALIZED KAC-MOODY ALGEBRAS AND CRYSTAL BASES

被引:13
作者
Kang, Seok-Jin [1 ,2 ]
Oh, Se-Jin [1 ]
Park, Euiyong [2 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 151747, South Korea
关键词
Categorification; crystals; Khovanov-Lauda-Rouquier algebras; perfect bases; quantum generalized Kac-Moody algebras; AUTOMORPHIC-FORMS; CANONICAL BASES; CONJECTURE;
D O I
10.1142/S0129167X12501169
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct and investigate the structure of the Khovanov-Lauda-Rouquier algebras R and their cyclotomic quotients R-lambda which give a categorification of quantum generalized Kac-Moody algebras. Let U-A(g) be the integral form of the quantum generalized Kac-Moody algebra associated with a Borcherds-Cartan matrix A = (a(ij)) i, j is an element of I and let K-0(R) be the Grothendieck group of finitely generated projective graded R-modules. We prove that there exists an injective algebra homomorphism Phi : U-A(-) (g) -> K-0(R) and that Phi is an isomorphism if a(ii) not equal 0 for all i is an element of I. Let B(infinity) and B(lambda) be the crystals of U-q(-) (g) and V (lambda), respectively, where V (lambda) is the irreducible highest weight U-q(g)-module. We denote by B(infinity) and B(lambda) the isomorphism classes of irreducible graded modules over R and R-lambda, respectively. If a(ii) not equal 0 for all i is an element of I, we define the U-q(g)-crystal structures on B(infinity) and B(lambda), and show that there exist crystal isomorphisms B(infinity) similar or equal to B(infinity) and B(lambda) similar or equal to B(lambda). One of the key ingredients of our approach is the perfect basis theory for generalized Kac-Moody algebras.
引用
收藏
页数:51
相关论文
共 35 条
[1]  
Berenstein A, 2004, CONTEMP MATH, V433, P13
[2]   MONSTROUS MOONSHINE AND MONSTROUS LIE-SUPERALGEBRAS [J].
BORCHERDS, RE .
INVENTIONES MATHEMATICAE, 1992, 109 (02) :405-444
[3]   Graded decomposition numbers for cyclotomic Hecke algebras [J].
Brundan, Jonathan ;
Kleshchev, Alexander .
ADVANCES IN MATHEMATICS, 2009, 222 (06) :1883-1942
[4]   Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras [J].
Brundan, Jonathan ;
Kleshchev, Alexander .
INVENTIONES MATHEMATICAE, 2009, 178 (03) :451-484
[5]   Some automorphisms of generalized Kac-Moody algebras [J].
Fuchs, J ;
Ray, U ;
Schweigert, C .
JOURNAL OF ALGEBRA, 1997, 191 (02) :518-540
[6]  
Gritsenko VA, 1998, INT J MATH, V9, P153, DOI 10.1142/S0129167X98000105
[7]   Automorphic forms and Lorentzian Kac-Moody algebras. Part II [J].
Gritsenko, VA ;
Nikulin, VV .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1998, 9 (02) :201-275
[8]   On the algebras of BPS states [J].
Harvey, JA ;
Moore, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 197 (03) :489-519
[9]   Algebras, BPS states, and strings [J].
Harvey, JA ;
Moore, G .
NUCLEAR PHYSICS B, 1996, 463 (2-3) :315-368
[10]   Crystal bases for quantum generalized Kac-Moody algebras [J].
Jeong, K ;
Kang, SJ ;
Kashiwara, M .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2005, 90 :395-438