One step growth of protein antifouling surfaces: Monolayers of poly(ethylene oxide) (PEO) derivatives on oxidized and hydrogen-passivated silicon surfaces

被引:50
作者
Cecchet, F
De Meersman, B
Demoustier-Champagne, S
Nysten, B
Jonas, AM
机构
[1] Catholic Univ Louvain, Unite Chim & Phys Hauts Polymeres, B-1348 Louvain, Belgium
[2] Catholic Univ Louvain, Res Ctr Micro & Nanoscop Mat & Elect Devices, CeRMiN, B-1348 Louvain, Belgium
关键词
D O I
10.1021/la052507z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We compare two routes for creating protein adsorption-resistant self-assembled monolayers (SAMs) by chemical modification of silicon surfaces with poly(ethylene oxide) (PEO) oligomeric derivatives. The first route involves the assembly of 2-methyl[(polyethyleneoxy)propyl]trichlorosilane (Cl3SiMPEO) films onto oxidized silicon surfaces (OH-SiOx) either by a liquid-phase process at room temperature or by a gas-phase process at 423 K, producing Si-O-Si bonds between the substrate and the organic layer. The second pathway makes use of the assembly of poly(ethylene glycol methyl ether) (MPEG) films onto hydrogen-passivated silicon surfaces (H-Si) using a liquid-phase process at 353 or 423 K, leading to the formation of Si-O-C bonds between the substrate and the organic layer. Structural investigation by X-ray reflectometry (XRR) reveals that the thickness and surface densities of the grafted PEO monolayers strongly depend on experimental conditions such as temperature and grafting time. Atomic force microscopy (AFM) shows that very smooth and homogeneous monolayers can be obtained with average roughnesses close to those measured on the corresponding bare substrates. Finally, the antifouling properties of the modified silicon surfaces were evaluated by X-ray photoelectron spectroscopy (XPS), using a membrane protein (P.69 antigen) as model protein. Both types of PEO monolayers exhibit excellent protein repellency, as soon as the grafting density is equal to or higher than 1.7 chains/nm(2).
引用
收藏
页码:1173 / 1181
页数:9
相关论文
共 40 条
[1]  
Alcantar NA, 2000, J BIOMED MATER RES, V51, P343, DOI 10.1002/1097-4636(20000905)51:3<343::AID-JBM7>3.0.CO
[2]  
2-D
[3]   Ordered polyelectrolyte "multilayers". 1. Mechanisms of growth and structure formation: A comparison with classical fuzzy "multilayers" [J].
Arys, X ;
Laschewsky, A ;
Jonas, AM .
MACROMOLECULES, 2001, 34 (10) :3318-3330
[4]  
Beamson G., 1992, ADV MATER, DOI DOI 10.1002/ADMA.19930051035
[5]   Insights into the formation mechanisms of Si-OR monolayers from the thermal reactions of alcohols and aldehydes with Si(111)-H [J].
Boukherroub, R ;
Morin, S ;
Sharpe, P ;
Wayner, DDM ;
Allongue, P .
LANGMUIR, 2000, 16 (19) :7429-7434
[6]   New synthetic routes to alkyl monolayers on the Si(111) surface [J].
Boukherroub, R ;
Morin, S ;
Bensebaa, F ;
Wayner, DDM .
LANGMUIR, 1999, 15 (11) :3831-3835
[7]   Organometallic chemistry on silicon surfaces: formation of functional monolayers bound through Si-C bonds [J].
Buriak, JM .
CHEMICAL COMMUNICATIONS, 1999, (12) :1051-1060
[8]   Preparation of mixed self-assembled monolayers (SAMs) that resist adsorption of proteins using the reaction of amines with a SAM that presents interchain carboxylic anhydride groups [J].
Chapman, RG ;
Ostuni, E ;
Yan, L ;
Whitesides, GM .
LANGMUIR, 2000, 16 (17) :6927-6936
[9]   Protein repellant silicone surfaces by covalent immobilization of poly(ethylene oxide) [J].
Chen, H ;
Zhang, Z ;
Chen, Y ;
Brook, MA ;
Sheardown, H .
BIOMATERIALS, 2005, 26 (15) :2391-2399
[10]   Photoreactivity of unsaturated compounds with hydrogen-terminated silicon(111) [J].
Cicero, RL ;
Linford, MR ;
Chidsey, CED .
LANGMUIR, 2000, 16 (13) :5688-5695