Hydrothermal liquefaction of Malaysia's algal biomass for high-quality bio-oil production

被引:27
|
作者
Latif, Nor-Insyirah Syahira Abdul [1 ]
Ong, Mei Yin [1 ]
Nomanbhay, Saifuddin [1 ]
机构
[1] Univ Tenaga Nas, Inst Sustainable Energy, Kajang 43000, Malaysia
来源
ENGINEERING IN LIFE SCIENCES | 2019年 / 19卷 / 04期
关键词
algal biomass; crude bio-oil; environmental impact; microwave assisted; renewable resources; GREEN CHEMISTRY; FAST PYROLYSIS; MICROALGAE; BIODIESEL; FEEDSTOCKS; MACROALGAE; LIQUID; CRUDE; CULTIVATION; CHEMICALS;
D O I
10.1002/elsc.201800144
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Currently, fossil materials form the majority of our energy and chemical source. Many global concerns force us to rethink about our current dependence on the fossil energy. Limiting the use of these energy sources is a key priority for most countries that pledge to reduce greenhouse gas emissions. The application of biomass, as substitute fossil resources for producing biofuels, plastics and chemicals, is a widely accepted strategy for sustainable development. Aquatic plants including algae possess competitive advantages as biomass resources compared to the terrestrial plants in this current global situation. Bio-oil production from algal biomass is technically and economically viable, cost competitive, requires no capacious lands and minimal water use and reduces atmospheric carbon dioxide. The aim of this paper is to review the potential of converting algal biomass, as an aquatic plant, into high-quality crude bio-oil through applicable processes in Malaysia. In particular, bio-based materials and fuels from algal biomass are considered as one of the reliable alternatives for clean energy. Currently, pyrolysis and hydrothermal liquefaction (HTL) are two foremost processes for bio-oil production from biomass. HTL can directly convert high-moisture algal biomass into bio-oil, whereas pyrolysis requires feedstock drying to reduce the energy consumption during the process. Microwave-assisted HTL, which can be conducted in aqueous environment, is suitable for aquatic plants and wet biomass such as algae.
引用
收藏
页码:246 / 269
页数:24
相关论文
共 50 条
  • [1] Catalytic hydrothermal liquefaction of Chinese herb residue for the production of high-quality bio-oil
    Guan, Haibin
    Ding, Wenran
    Liu, Suxiang
    Zhao, Baofeng
    Zhang, Heming
    Zhong, Cunqing
    Chen, Bingtong
    Song, Angang
    Zhu, Di
    Li, Huan
    Feng, Xiangyu
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (30) : 11205 - 11213
  • [2] Bio-oil Production via Subcritical Hydrothermal Liquefaction of Biomass
    Durak, Halil
    INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES (ICANAS 2017), 2017, 1833
  • [3] Hydrothermal liquefaction of laboratory cultivated and commercial algal biomass into crude bio-oil
    Liang, Shaobo
    Wei, Liqing
    Passero, Maxine L.
    Feris, Kevin
    McDonald, Armando G.
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2017, 36 (03) : 781 - 787
  • [4] Hydrothermal liquefaction of biomass: Influence of temperature and biomass composition on the bio-oil production
    de Caprariis, Benedetta
    De Filippis, Paolo
    Petrullo, Antonietta
    Scarsella, Marco
    FUEL, 2017, 208 : 618 - 625
  • [5] Bio-oil production from hydrothermal liquefaction of algal biomass: Effects of feedstock properties and reaction parameters
    Gong, Miao
    Jiang, Wangang
    Wang, Shunrang
    Liu, Piao
    Xu, Fuqiang
    Wang, Wei
    Fan, Yujie
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (05):
  • [6] High-quality bio-oil production via catalytic pyrolysis of biocrude oil from hydrothermal liquefaction of microalgae Spirulina
    Li, Hao
    Dong, Zhen
    Wang, Bao
    Wu, Wenfu
    Cao, Maojiong
    Zhang, Yuanhui
    Liu, Zhidan
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2023, 173
  • [7] Progress in Hydrothermal Liquefaction of Algal Biomass and Hydrothermal Upgrading of the Subsequent Crude Bio-Oil: A Mini Review
    Djandja, Oraleou Sangue
    Wang, Zhicong
    Chen, Lei
    Qin, Liang
    Wang, Feng
    Xu, Yuping
    Duan, Peigao
    ENERGY & FUELS, 2020, 34 (10) : 11723 - 11751
  • [8] Hydrothermal liquefaction of Prosopis juliflora biomass for the production of ferulic acid and bio-oil
    Arun, Jayaseelan
    Gopinath, Kannappan Panchamoorthy
    Sivaramakrishnan, Ramachandran
    Shyam, Sivaprasad
    Mayuri, Namasivayam
    Manasa, Sadhasivan
    Pugazhendhi, Arivalagan
    BIORESOURCE TECHNOLOGY, 2021, 319
  • [9] A review on catalytic pyrolysis for high-quality bio-oil production from biomass
    Dada, Tewodros Kassa
    Sheehan, Madoc
    Murugavelh, S.
    Antunes, Elsa
    BIOMASS CONVERSION AND BIOREFINERY, 2023, 13 (04) : 2595 - 2614
  • [10] A review on catalytic pyrolysis for high-quality bio-oil production from biomass
    Tewodros Kassa Dada
    Madoc Sheehan
    S. Murugavelh
    Elsa Antunes
    Biomass Conversion and Biorefinery, 2023, 13 : 2595 - 2614