Tunable Solvent Permeation Properties of Thin Film Nanocomposite Membrane by Constructing Dual-Pathways Using Cyclodextrins for Organic Solvent Nanofiltration

被引:51
作者
Mao, Heng [1 ]
Zhang, Haoqing [1 ]
Li, Yifan [1 ]
Xue, Yubin [1 ]
Pei, Fei [2 ]
Wang, Jingtao [1 ]
Liu, Jindun [1 ]
机构
[1] Zhengzhou Univ, Sch Chem Engn & Energy, Zhengzhou 450001, Peoples R China
[2] Xiamen Univ, PenTung Sah Inst Micro Nano Sci & Technol, Xiamen 361005, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Cyclodextrin; Thin film nanocomposite membrane; Intafacial polymerization; Tunable solvent permeation properties; Organic solvent nanofiltration; ENHANCED SEPARATION PERFORMANCE; RESISTANT NANOFILTRATION; INTERFACIAL POLYMERIZATION; COMPOSITE MEMBRANE; GUEST INTERACTIONS; REVERSE-OSMOSIS; GRAPHENE OXIDE; ACTIVE LAYER; HIGH-FLUX; WATER;
D O I
10.1021/acssuschemeng.5b00435
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Design and fabrication of thin film nanocomposite (TFN) membranes with tunable solvent permeation properties is highly required to meet the demands of practical applications. Herein, a series of TFN membranes are elaborately fabricated by embedding cydodextrins (CDs) into hydrophilic polymeric membrane (e.g., polyethylenimine, PEI). Within the active layer, hydrophobic cavities of CDs serve as exquisite pathways for nonpolar solvents, whereas the free volume cavities of the PEI matrix act as efficient pathways for polar solvents, constructing a dual-pathway nanostructure. The solvent permeation properties of these two pathways can be accurately tuned by adjusting the cavity size of CD and the fractional free volume (FFV) of PEI. Increasing the cavity size of CD allows larger nonpolar solvent to permeate, meanwhile increasing solvent flux. For instance, varying the cavity size from 0.60 to 0.75 nm elevates the toluene (0.60 nm) permeance from 0.13 to 2.52 L m(-2) h(-1) bar(-1). Similar behaviors are observed for polar solvents when increasing the FFV of PEI by adjusting the PEI CD interfacial interactions. Particularly, the isopropyl alcohol permeance is elevated from 3.37 to 4.16 L m(-2) h(-1) bar(-1) when increasing FFV from rejection ability and extended trial of TFN membranes are also explored.
引用
收藏
页码:1925 / 1933
页数:9
相关论文
共 46 条
[1]   Application of polysulfone/cyclodextrin mixed-matrix membranes in the removal of natural organic matter from water [J].
Adams, F. V. ;
Nxumalo, E. N. ;
Krause, R. W. M. ;
Hoek, E. M. V. ;
Mamba, B. B. .
PHYSICS AND CHEMISTRY OF THE EARTH, 2014, 67-69 :71-78
[2]   Multilayered polyelectrolyte complex based solvent resistant nanofiltration membranes prepared from weak polyacids [J].
Ahmadiannamini, Pejman ;
Li, Xianfeng ;
Goyens, Ward ;
Joseph, Nithya ;
Meesschaert, Boudewijn ;
Vankelecom, Ivo F. J. .
JOURNAL OF MEMBRANE SCIENCE, 2012, 394 :98-106
[3]   Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance [J].
Chae, Hee-Ro ;
Lee, Jaewoo ;
Lee, Chung-Hak ;
Kim, In-Chul ;
Park, Pyung-Kyu .
JOURNAL OF MEMBRANE SCIENCE, 2015, 483 :128-135
[4]   Effect of the surface property of poly(tetrafluoroethylene) support on the mechanism of polyamide active layer formation by interfacial polymerization [J].
Chao, Wei-Chi ;
Huang, Yun-Hsuan ;
Hung, Wei-Song ;
An, Quanfu ;
Hu, Chien-Chieh ;
Lee, Kueir-Rarn ;
Lai, Juin-Yih .
SOFT MATTER, 2012, 8 (34) :8998-9004
[5]   Carbonaceous Nanofiber Membrane Functionalized by beta-Cyclodextrins for Molecular Filtration [J].
Chen, Ping ;
Liang, Hai-Wei ;
Lv, Xiao-Han ;
Zhu, Hai-Zhou ;
Yao, Hong-Bin ;
Yu, Shu-Hong .
ACS NANO, 2011, 5 (07) :5928-5935
[6]   Counterintuitive Gas Transport through Polymeric Nanocomposite Membrane: Insights from Molecular Dynamics Simulations [J].
Chen, Yi ;
Jia, Maolin ;
Xu, Hui ;
Cao, Yang ;
Fan, Haojun .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (48) :28179-28188
[7]   Review: A History of Cyclodextrins [J].
Crini, Gregorio .
CHEMICAL REVIEWS, 2014, 114 (21) :10940-10975
[8]   Performance of solvent resistant nanofiltration membranes for purification of residual solvent in the pharmaceutical industry: experiments and simulation [J].
Darvishmanesh, Siavash ;
Firoozpour, Loghman ;
Vanneste, Johan ;
Luis, Patricia ;
Degreve, Jan ;
Van der Bruggen, Bart .
GREEN CHEMISTRY, 2011, 13 (12) :3476-3483
[9]   Performance of Nanofiltration Membranes for Solvent Purification in the Oil Industry [J].
Darvishmanesh, Siavash ;
Robberecht, Thomas ;
Luis, Patricia ;
Degreve, Jan ;
Van der Bruggen, Bart .
JOURNAL OF THE AMERICAN OIL CHEMISTS SOCIETY, 2011, 88 (08) :1255-1261
[10]   Mechanisms of solute rejection in solvent resistant nanofiltration: the effect of solvent on solute rejection [J].
Darvishmanesh, Siavash ;
Degreve, Jan ;
Van der Bruggen, Bart .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (40) :13333-13342