Nonparametric neural network estimation of Lyapunov exponents and a direct test for chaos

被引:70
作者
Shintani, M
Linton, O
机构
[1] Vanderbilt Univ, Dept Econ, Nashville, TN 37235 USA
[2] Univ London London Sch Econ & Polit Sci, Dept Econ, London WC2A 2AE, England
基金
美国国家科学基金会;
关键词
artificial neural networks; nonlinear dynamics; nonlinear time series; nonparametric regression; sieve estimation;
D O I
10.1016/S0304-4076(03)00205-7
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper derives the asymptotic distribution of the nonparametric neural network estimator of the Lyapunov exponent in a noisy system. Positivity of the Lyapunov exponent is an operational definition of chaos. We introduce a statistical framework for testing the chaotic hypothesis based on the estimated Lyapunov exponents and a consistent variance estimator. A simulation study to evaluate small sample performance is reported. We also apply our procedures to daily stock return data. In most cases, the hypothesis of chaos in the stock return series is rejected at the 1% level with an exception in some higher power transformed absolute returns. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 33
页数:33
相关论文
共 39 条
[1]   Uncovering nonlinear structure in real-time stock-market indexes: The S&P 500, the DAX, the Nikkei 225, and the FTSE-100 [J].
Abhyankar, A ;
Copeland, LS ;
Wong, W .
JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1997, 15 (01) :1-14
[2]   HETEROSKEDASTICITY AND AUTOCORRELATION CONSISTENT COVARIANCE-MATRIX ESTIMATION [J].
ANDREWS, DWK .
ECONOMETRICA, 1991, 59 (03) :817-858
[3]  
[Anonymous], 1996, NONLINEAR DYNAMICS E
[4]   A single-blind controlled competition among tests for nonlinearity and chaos [J].
Barnett, WA ;
Gallant, AR ;
Hinich, MJ ;
Jungeilges, JA ;
Kaplan, DT ;
Jensen, MJ .
JOURNAL OF ECONOMETRICS, 1998, 82 (01) :157-192
[5]   ROBUSTNESS OF NONLINEARITY AND CHAOS TESTS TO MEASUREMENT ERROR, INFERENCE METHOD, AND SAMPLE-SIZE [J].
BARNETT, WA ;
GALLANT, AR ;
HINICH, MJ ;
JUNGEILGES, JA ;
KAPLAN, DT ;
JENSEN, MJ .
JOURNAL OF ECONOMIC BEHAVIOR & ORGANIZATION, 1995, 27 (02) :301-320
[6]   UNIVERSAL APPROXIMATION BOUNDS FOR SUPERPOSITIONS OF A SIGMOIDAL FUNCTION [J].
BARRON, AR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (03) :930-945
[7]  
Bask M, 2002, STUD NONLINEAR DYN E, V6
[8]   Heterogeneous beliefs and routes to chaos in a simple asset pricing model [J].
Brock, WA ;
Hommes, CH .
JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 1998, 22 (8-9) :1235-1274
[9]  
Broock WA., 1996, ECONOMET REV, V15, P197, DOI [DOI 10.1080/07474939608800353, DOI 10.1080/2F07474939608800353.NUME]
[10]   Sieve extremum estimates for weakly dependent data [J].
Chen, XH ;
Shen, XT .
ECONOMETRICA, 1998, 66 (02) :289-314