Bidirectional titration of yeast gene expression using a pooled CRISPR guide RNA approach

被引:21
作者
Bowman, Emily K. [1 ]
Deaner, Matthew [2 ,4 ]
Cheng, Jan-Fang [3 ]
Evans, Robert [3 ]
Oberortner, Ernst [3 ]
Yoshikuni, Yasuo [3 ]
Alper, Hal S. [1 ,2 ]
机构
[1] Univ Texas Austin, Inst Cellular & Mol Biol, Austin, TX 78712 USA
[2] Univ Texas Austin, McKetta Dept Chem Engn, Austin, TX 78712 USA
[3] Lawrence Berkeley Natl Lab, US DOE, Joint Genome Inst, Berkeley, CA 94720 USA
[4] Zymergen, Genome Engn DNA Synth, Emeryville, CA 94608 USA
关键词
CRISPR; graded expression; synthetic biology; essential genes; next-generation sequencing; SACCHAROMYCES-CEREVISIAE; FERMENTATION; OVEREXPRESSION;
D O I
10.1073/pnas.2007413117
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Most classic genetic approaches utilize binary modifications that preclude the identification of key knockdowns for essential genes or other targets that only require moderate modulation. As a complementary approach to these classic genetic methods, we describe a plasmid-based library methodology that affords bidirectional, graded modulation of gene expression enabled by tiling the promoter regions of all 969 genes that comprise the ito977 model of Saccharomyces cerevisiae's metabolic network. When coupled with a CRISPR-dCas9-based modulation and next-generation sequencing, this method affords a library-based, bidirection titration of gene expression across all major metabolic genes. We utilized this approach in two case studies: growth enrichment on alternative sugars, glycerol and galactose, and chemical overproduction of betaxanthins, leading to the identification of unique gene targets. In particular, we identify essential genes and other targets that were missed by classic genetic approaches.
引用
收藏
页码:18424 / 18430
页数:7
相关论文
共 28 条
[1]   Tuning genetic control through promoter engineering [J].
Alper, H ;
Fischer, C ;
Nevoigt, E ;
Stephanopoulos, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (36) :12678-12683
[2]   Transcription activator-like effector nucleases mediated metabolic engineering for enhanced fatty acids production in Saccharomyces cerevisiae [J].
Aouida, Mustapha ;
Li, Lixin ;
Mahjoub, Ali ;
Alshareef, Sahar ;
Ali, Zahir ;
Piatek, Agnieszka ;
Mahfouz, Magdy M. .
JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 2015, 120 (04) :364-371
[3]  
Bowman E. K., BI DIRECTIONAL TITRA
[4]   Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase:: Example of transcript analysis as a tool in inverse metabolic engineering [J].
Bro, C ;
Knudsen, S ;
Regenberg, B ;
Olsson, L ;
Nielsen, J .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2005, 71 (11) :6465-6472
[5]  
Chavez A, 2015, NAT METHODS, V12, P326, DOI [10.1038/nmeth.3312, 10.1038/NMETH.3312]
[6]   Metabolic engineering of muconic acid production in Saccharomyces cerevisiae [J].
Curran, Kathleen A. ;
Leavitt, Johnm. ;
Karim, AshtyS. ;
Alper, Hal S. .
METABOLIC ENGINEERING, 2013, 15 :55-66
[7]   Systematic testing of enzyme perturbation sensitivities via graded dCas9 modulation in Saccharomyces cerevisiae [J].
Deaner, Matthew ;
Alper, Hal S. .
METABOLIC ENGINEERING, 2017, 40 :14-22
[8]   An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose [J].
DeLoache, William C. ;
Russ, Zachary N. ;
Narcross, Lauren ;
Gonzales, Andrew M. ;
Martin, Vincent J. J. ;
Dueber, John E. .
NATURE CHEMICAL BIOLOGY, 2015, 11 (07) :465-+
[9]   Customized optimization of metabolic pathways by combinatorial transcriptional engineering [J].
Du, Jing ;
Yuan, Yongbo ;
Si, Tong ;
Lian, Jiazhang ;
Zhao, Huimin .
NUCLEIC ACIDS RESEARCH, 2012, 40 (18) :e142
[10]   SYNTHETIC BIOLOGY Complete biosynthesis of opioids in yeast [J].
Galanie, Stephanie ;
Thodey, Kate ;
Trenchard, Isis J. ;
Interrante, Maria Filsinger ;
Smolke, Christina D. .
SCIENCE, 2015, 349 (6252) :1095-1100