Seizure detection approach using S-transform and singular value decomposition

被引:26
作者
Xia, Yudan
Zhou, Weidong [1 ]
Li, Chengcheng
Yuan, Qi
Geng, Shujuan
机构
[1] Shandong Univ, Sch Informat Sci & Engn, Jinan 250100, Peoples R China
关键词
S-transform; Singular value decomposition (SVD); Seizure detection; Bayesian linear discriminant analysis (BLDA); EPILEPTIC SEIZURES; WARNING SYSTEM; SVD; EXTRACTION;
D O I
10.1016/j.yebeh.2015.07.043
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Automatic seizure detection plays a significant role in the diagnosis of epilepsy. This paper presents a novel method based on S-transform and singular value decomposition (SVD) for seizure detection. Primarily, S-transform is performed on EEG signals, and the obtained time-frequency matrix is divided into submatrices. Then, the singular values of each submatrix are extracted using singular value decomposition (SVD). Effective features are constructed by adding the largest singular values in the same frequency band together and fed into Bayesian linear discriminant analysis (BLDA) classifier for decision. Finally, postprocessing is applied to obtain higher sensitivity and lower false detection rate. A total of 183.07 hours of intracranial EEG recordings containing 82 seizure events from 20 patients were used to evaluate the system. The proposed method had a sensitivity of 96.40% and a specificity of 99.01%, with a false detection rate of 0.16/ h. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:187 / 193
页数:7
相关论文
共 32 条
[1]   Hybrid Technique Using Singular Value Decomposition (SVD) and Support Vector Machine (SVM) Approach for Earthquake Prediction [J].
Astuti, Winda ;
Akmeliawati, Rini ;
Sediono, Wahju ;
Salami, M. J. E. .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (05) :1719-1728
[2]   Early Seizure Detection Using Neuronal Potential Similarity: A Generalized Low-Complexity and Robust Measure [J].
Bandarabadi, Mojtaba ;
Rasekhi, Jalil ;
Teixeira, Cesar A. ;
Netoff, Theoden I. ;
Parhi, Keshab K. ;
Dourado, Antonio .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2015, 25 (05)
[3]   Detection and characterization of multiple power quality disturbances with a fast S-transform and decision tree based classifier [J].
Biswal, Milan ;
Dash, P. K. .
DIGITAL SIGNAL PROCESSING, 2013, 23 (04) :1071-1083
[4]   Improved patient specific seizure detection during pre-surgical evaluation [J].
Chua, Eric C. -P. ;
Patel, Kunjan ;
Fitzsimons, Mary ;
Bleakley, Chris J. .
CLINICAL NEUROPHYSIOLOGY, 2011, 122 (04) :672-679
[5]   ELECTROCARDIOGRAM BEAT CLASSIFICATION USING S-TRANSFORM BASED FEATURE SET [J].
Das, Manab Kumar ;
Ari, Samit .
JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2014, 14 (05)
[6]   Power quality analysis using S-Transform [J].
Dash, PK ;
Panigrahi, BK ;
Panda, G .
IEEE TRANSACTIONS ON POWER DELIVERY, 2003, 18 (02) :406-411
[7]   AUTOMATIC RECOGNITION OF EPILEPTIC SEIZURES IN THE EEG [J].
GOTMAN, J .
ELECTROENCEPHALOGRAPHY AND CLINICAL NEUROPHYSIOLOGY, 1982, 54 (05) :530-540
[8]   An automatic warning system for epileptic seizures recorded on intracerebral EEGs [J].
Grewal, S ;
Gotman, J .
CLINICAL NEUROPHYSIOLOGY, 2005, 116 (10) :2460-2472
[9]   Time-frequency feature extraction of newborn EEG seizure using SVD-based techniques [J].
Hassanpour, H ;
Mesbah, M ;
Boashash, B .
EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2004, 2004 (16) :2544-2554
[10]   An efficient P300-based brain-computer interface for disabled subjects [J].
Hoffmann, Ulrich ;
Vesin, Jean-Marc ;
Ebrahimi, Touradj ;
Diserens, Karin .
JOURNAL OF NEUROSCIENCE METHODS, 2008, 167 (01) :115-125