Role of graphene on the surface chemical reactions of BiPO4-rGO with low OH-related defects

被引:61
作者
Gao, Erping [1 ]
Wang, Wenzhong [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China
基金
中国国家自然科学基金;
关键词
PHOTOCATALYTIC ACTIVITY; ELECTRONIC TRANSPORT; HIGHLY EFFICIENT; GAS; NANOCOMPOSITES; DEGRADATION; SEMICONDUCTOR; PERFORMANCES; COMPOSITE;
D O I
10.1039/c3nr03370h
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Graphene has been widely introduced into photocatalysis to enhance photocatalytic performance due to its unique physical and chemical properties. However, the effect of graphene on the surface chemical reactions of photocatalysis has not been clearly researched, which is important for photocatalysis because photocatalytic reactions ultimately occur on the catalyst surface. Herein, a two-step solution-phase reaction has been designed to synthesize quasi-core-shell structured BiPO4-rGO cuboids and the role of graphene on the surface chemical reactions was investigated in detail. It was found that the introduced graphene modified the process and the mechanism of the surface chemical reactions. The change mainly originates from the interaction between graphene and the adsorbed O-2 molecule. Due to the electron transfer from graphene to adsorbed O-2, graphene could tune the interfacial charge transport and efficiently activate molecular oxygen to form O-2(center dot-) anions as the major oxidation species instead of (OH)-O-center dot. In addition, the two- step synthesis approach could efficiently suppress the formation of OH-related defects in the lattice. As a result, the BiPO4-rGO composite exhibited superior photocatalytic activity to BiPO4 and P25, about 4.3 times that of BiPO4 and 6.9 times that of P25.
引用
收藏
页码:11248 / 11256
页数:9
相关论文
共 39 条
[1]   WO3 nanorods/graphene nanocomposites for high-efficiency visible-light-driven photocatalysis and NO2 gas sensing [J].
An, Xiaoqiang ;
Yu, Jimmy C. ;
Wang, Yu ;
Hu, Yongming ;
Yu, Xuelian ;
Zhang, Guangjin .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (17) :8525-8531
[2]   Visible Photocatalytic Activity Enhancement of ZnWO4 by Graphene Hybridization [J].
Bai, Xiaojuan ;
Wang, Li ;
Zhu, Yongfa .
ACS CATALYSIS, 2012, 2 (12) :2769-2778
[3]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[4]   Carbon-Based Field-Effect Transistors for Nanoelectronics [J].
Burghard, Marko ;
Klauk, Hagen ;
Kern, Klaus .
ADVANCED MATERIALS, 2009, 21 (25-26) :2586-2600
[5]   Nitrogen-Doped Graphene/ZnSe Nanocomposites: Hydrothermal Synthesis and Their Enhanced Electrochemical and Photocatalytic Activities [J].
Chen, Ping ;
Xiao, Tian-Yuan ;
Li, Hui-Hui ;
Yang, Jing-Jing ;
Wang, Zheng ;
Yao, Hong-Bin ;
Yu, Shu-Hong .
ACS NANO, 2012, 6 (01) :712-719
[6]   Synthesis of graphene-ZnO nanorod nanocomposites with improved photoactivity and anti-photocorrosion [J].
Chen, Zhang ;
Zhang, Nan ;
Xu, Yi-Jun .
CRYSTENGCOMM, 2013, 15 (15) :3022-3030
[7]   Raman spectroscopy of graphene on different substrates and influence of defects [J].
Das, Anindya ;
Chakraborty, Biswanath ;
Sood, A. K. .
BULLETIN OF MATERIALS SCIENCE, 2008, 31 (03) :579-584
[8]   Substrate-free gas-phase synthesis of graphene sheets [J].
Dato, Albert ;
Radmilovic, Velimir ;
Lee, Zonghoon ;
Phillips, Jonathan ;
Frenklach, Michael .
NANO LETTERS, 2008, 8 (07) :2012-2016
[9]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[10]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)