EXPLICIT COMPUTATIONS IN HECKE ALGEBRAS OF GL2 OVER DEDEKIND DOMAINS

被引:0
|
作者
Ensenbach, Marc [1 ]
机构
[1] Univ Siegen, Dept Math, D-57068 Siegen, Germany
关键词
Unimodular group; Dedekind domain; congruence subgroup; index formula; Hecke algebra; MODULAR-FORMS; OPERATORS;
D O I
10.1090/S0002-9939-2013-11651-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a formula for the number of right cosets contained in a double coset with respect to the unimodular group of invertible (2 x 2)matrices over a Dedekind domain is developed. As applications we derive an index formula for congruence subgroups and an algorithm for the explicit calculation of products in Hecke algebras.
引用
收藏
页码:3709 / 3722
页数:14
相关论文
共 3 条
  • [1] GL2 x GSp2 L-values and Hecke eigenvalue congruences
    Bergstrom, Jonas
    Dummigan, Neil
    Farmer, David
    Koutsoliotas, Sally
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2019, 31 (03): : 751 - 775
  • [2] Galois representations attached to automorphic forms on GL2 over CM fields
    Mok, Chung Pang
    COMPOSITIO MATHEMATICA, 2014, 150 (04) : 523 - 567
  • [3] REPRESENTATIONS OF AFFINE HECKE ALGEBRAS OF TYPE (G)over-tilde2
    Xi Nanhua
    ACTA MATHEMATICA SCIENTIA, 2009, 29 (03) : 515 - 526