Numerical study on thermal hydraulic performance of a Printed Circuit Heat Exchanger

被引:78
|
作者
Figley, Justin [1 ]
Sun, Xiaodong [1 ]
Mylavarapu, Sai K. [1 ]
Hajek, Brian [1 ]
机构
[1] Ohio State Univ, Nucl Engn Program, Columbus, OH 43210 USA
关键词
Printed Circuit Heat Exchanger; PCHE; Very High Temperature Reactor; VHTR; Compact heat exchanger;
D O I
10.1016/j.pnucene.2013.05.003
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Very High Temperature Reactors (VHTRs) require a high-temperature and high integrity Intermediate Heat Exchanger (IHX) with high effectiveness to efficiently transfer the core thermal output to a secondary fluid for electricity generation, hydrogen production, and/or other industrial process heat applications. A class of compact plate-type heat exchanger, namely, Printed Circuit Heat Exchanger (PCHE), is one of the leading candidate IHX configuration being considered for VHTR applications. In the current study, simplified computational models of PCHE are investigated using Fluent", software. The geometry of the models considered in the study replicate the PCHEs that were fabricated using Alloy 617 plates for use in a High-Temperature Helium Facility (HTHF) at The Ohio State University. The computational cases investigated are based on the design conditions of the HTHF, i.e., a maximum operating pressure of 3 MPa, hot and cold side inlet temperatures of 1173 K and 813 K, respectively, and mass flow rates varying from 10 to 80 kg/h. This range of mass flow rates correspond to laminar and laminar-to-turbulent transition flows in the PCHE flow channel passages. The laminar-to-turbulent transition behavior has been numerically investigated for the semicircular and circular channel geometries. The numerical study showed that the transition is observed at Reynolds numbers of 2300 and 3100 for the circular and semicircular channels, respectively. Heat transfer and pressure drop characteristics are evaluated to provide preliminary performance data for the PCHEs fabricated at operating temperatures similar to those of the VHTRs. Local convective heat transfer coefficients are calculated for the hot and cold sides and compared with the available correlations for the circular and semicircular ducts. Overall performance characteristics of the PCHE computational model are computed and described in terms of the thermal effectiveness, number of transfer units, and overall heat transfer coefficient. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:89 / 96
页数:8
相关论文
共 50 条
  • [1] Numerical investigation on the thermal-hydraulic performance of helical twine printed circuit heat exchanger
    Li, Yantao
    Qiu, Zhiling
    Cui, Daan
    Wang, Zhe
    Zhang, Jifeng
    Ji, Yulong
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2021, 128
  • [2] Numerical investigation on thermal-hydraulic performance of new printed circuit heat exchanger model
    Kim, Dong Eok
    Kim, Moo Hwan
    Cha, Jae Eun
    Kim, Seong O.
    NUCLEAR ENGINEERING AND DESIGN, 2008, 238 (12) : 3269 - 3276
  • [3] Experimental and numerical study on thermal-hydraulic performance of printed circuit heat exchanger for liquefied gas vaporization
    Zhao, Zhongchao
    Chen, Xudong
    Zhang, Xiao
    Ma, Xiaolong
    Yang, Shan
    ENERGY SCIENCE & ENGINEERING, 2020, 8 (02) : 426 - 440
  • [4] Study on the Thermal-hydraulic Performance of Sinusoidal Channeled Printed Circuit Heat Exchanger
    Wang, Jian
    Sun, Yuwei
    Lu, Mingjian
    Wang, Jiawei
    Yan, Xinping
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 5679 - 5684
  • [5] A Parametric Study of the Thermal-Hydraulic Performance of a Zigzag Printed Circuit Heat Exchanger
    Lee, Sang-Moon
    Kim, Kwang-Yong
    HEAT TRANSFER ENGINEERING, 2014, 35 (13) : 1192 - 1200
  • [6] Study on the Thermal-hydraulic Performance of Different Channels in Printed Circuit Heat Exchanger
    Wu, Quan
    Liao, Haiyan
    Zhang, Zhongmei
    Han, Zengxiao
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2023, 44 (09): : 2521 - 2531
  • [7] Numerical study on heat transfer performance of printed circuit heat exchanger with anisotropic thermal conductivity
    Li, Libo
    Bi, Jiyuan
    Ma, Jingkai
    Zhang, Xiaoxu
    Wang, Qiuwang
    Ma, Ting
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2024, 109
  • [8] Numerical investigation on thermal-hydraulic performance of variable cross section printed circuit heat exchanger
    Yuan, Ping
    Tian, Hua
    Wang, Xuan
    Zhang, Xuanang
    Zhang, Hongfei
    Liang, Xingyu
    Shu, Gequn
    Li, Zhuqing
    PHYSICS OF FLUIDS, 2024, 36 (04)
  • [9] Thermal and hydraulic performance of a large scale printed circuit heat exchanger (PCHE)
    Shin, Jeong-Heon
    Yoon, Seok Ho
    CASE STUDIES IN THERMAL ENGINEERING, 2022, 35
  • [10] Thermal-hydraulic performance of sinusoidal channel printed circuit heat exchanger
    Lyu Y.
    Li Q.
    Wen Z.
    Huagong Xuebao/CIESC Journal, 2020, 71 : 142 - 151