An equivariant pullback structure of trimmable graph C'-algebras

被引:0
作者
Arici, Francesca [1 ]
D'Andrea, Francesco [2 ,3 ]
Hajac, Piotr M. [4 ]
Tobolski, Mariusz [5 ]
机构
[1] Leiden Univ, Math Inst, POB 9512, NL-2300 Leiden, Netherlands
[2] Univ Napoli Federico II, Complesso MSA, Via Cintia, I-80216 Naples, Italy
[3] Ist Nazl Fis Nucl, Sez Napoli, Complesso MSA, Via Cintia, I-80126 Naples, Italy
[4] Polish Acad Sci, Inst Matematyczny, Ul Sniadeckich 8, PL-00656 Warsaw, Poland
[5] Uniwersytet Wroclawski, Inst Matematyczny, Pl Grunwaldzki 2-4, PL-50384 Wroclaw, Poland
基金
欧盟地平线“2020”;
关键词
Compact quantum spaces; graph C *-algebras; equivariant pullbacks; K-theory; the Mayer-Vietoris sequence; K-THEORY; NONCOMMUTATIVE BALLS; ASTERISK-ALGEBRAS; CSTAR-ALGEBRAS; QUANTUM LENS; SPHERES; SPACES;
D O I
10.4171/JNCG/421
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
To unravel the structure of fundamental examples studied in noncommutative topology, we prove that the graph C*-algebra C*(E) of a trimmable graph E is U(1)-equivariantly iso-morphic to a pullback C *-algebra of a subgraph C *-algebra C*(E'') and the C *-algebra of func-tions on a circle tensored with another subgraph C*-algebra C*(E'). This allows us to approach the structure and K-theory of the fixed-point subalgebra C*(E)U .1/ through the (typically simpler) C *-algebras C*(E'), C*(E'') and C*(E'')U.1/. As examples of trimmable graphs, we consider one-loop extensions of the standard graphs encoding respectively the Cuntz algebra O2 and the Toeplitz algebra T . Then we analyze equivariant pullback structures of trimmable graphs yielding the C*-algebras of the Vaksman-Soibelman quantum sphere S2n+1 q and the quantum lens space L3 q(l;1, l), respectively.
引用
收藏
页码:761 / 785
页数:25
相关论文
共 40 条
[1]  
abrowski L. D, 2012, OPERATOR ALGEBRAS QU, V98, P67
[2]  
Arici F., 2018, MATRIX Book Ser., V1, P251
[3]  
Arici F, 2016, OPER THEORY ADV APPL, V252, P1
[4]  
Bates Teresa., 2000, New York J. Math, V6, P307
[5]  
Baum P. F., LECT NOTES NONCOMMUT
[6]   The K-theory of Heegaard-type quantum 3-spheres [J].
Baum, Paul F. ;
Hajac, Piotr M. ;
Matthes, Rainer ;
Szymanski, Wojciech .
K-THEORY, 2005, 35 (1-2) :159-186
[7]  
Blackadar B., 1998, K-Theory for Operator Algebras, Vsecond
[8]   The C*-algebras of quantum lens and weighted projective spaces [J].
Brzezinski, Tomasz ;
Szymanski, Wojciech .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2018, 12 (01) :195-215
[9]   Quantum Teardrops [J].
Brzezinski, Tomasz ;
Fairfax, Simon A. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 316 (01) :151-170
[10]   Index maps in the K-theory of graph algebras [J].
Carlsen, Toke Meier ;
Eilers, Soren ;
Tomforde, Mark .
JOURNAL OF K-THEORY, 2012, 9 (02) :385-406