Decision tree classifiers for evidential attribute values and class labels

被引:53
作者
Trabelsi, Asma [1 ,2 ]
Elouedi, Zied [1 ]
Lefevre, Eric [2 ]
机构
[1] Univ Tunis, Inst Super Gest Tunis, LARODEC, Tunis, Tunisia
[2] Univ Artois, EA 3926, Lab Genie Informat & Automat Artois LGI2A, F-62400 Bethune, France
关键词
Decision tree classifier; Imperfect data; Evidence theory; TRANSFERABLE BELIEF MODEL; COMBINATION; ASSOCIATION;
D O I
10.1016/j.fss.2018.11.006
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Decision trees are well-known machine learning techniques for solving complex classification problems. Despite their great success, the standard decision tree algorithms do not have the ability to process imperfect knowledge, meaning uncertain, imprecise and incomplete data. In this paper, we develop new decision tree approaches to cope with data that have uncertain attribute values and class labels. More concretely, we tackle the case where the uncertainty is represented and managed through the evidence theory. (C) 2018 Published by Elsevier B.V.
引用
收藏
页码:46 / 62
页数:17
相关论文
共 40 条
[1]  
BEZDEK J, 1994, IEEE T FUZZY SYST, V2, P1
[2]   SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation [J].
Blewitt, Marnie E. ;
Gendrel, Anne-Valerie ;
Pang, Zhenyi ;
Sparrow, Duncan B. ;
Whitelaw, Nadia ;
Craig, Jeffrey M. ;
Apedaile, Anwyn ;
Hilton, Douglas J. ;
Dunwoodie, Sally L. ;
Brockdorff, Neil ;
Kay, Graham F. ;
Whitelaw, Emma .
NATURE GENETICS, 2008, 40 (05) :663-669
[3]  
Crookston NL, 2008, J STAT SOFTW, V23
[4]   A DISTANCE-BASED ATTRIBUTE SELECTION MEASURE FOR DECISION TREE INDUCTION [J].
DEMANTARAS, RL .
MACHINE LEARNING, 1991, 6 (01) :81-92
[5]  
Denoeux T, 1999, INT J APPROX REASON, V20, P79, DOI 10.1016/S0888-613X(98)10023-3
[6]   Conjunctive and disjunctive combination of belief functions induced by nondistinct bodies of evidence [J].
Denoeux, Thierry .
ARTIFICIAL INTELLIGENCE, 2008, 172 (2-3) :234-264
[7]  
Dubois Didier., 1988, Combining Fuzzy Impression with Probabilistic Uncertainty in Decision Making, P48
[8]  
Elouedi Z, 2000, LECT NOTES ARTIF INT, V1904, P80
[9]   Belief decision trees: theoretical foundations [J].
Elouedi, Z ;
Mellouli, K ;
Smets, P .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2001, 28 (2-3) :91-124
[10]  
Hüllermeier E, 2002, LECT NOTES ARTIF INT, V2430, P173