Thin Plate Splines for Transfinite Interpolation at Concentric Circles

被引:4
作者
Bejancu, Aurelian [1 ]
机构
[1] Kuwait Univ, Safat 13060, Kuwait
关键词
approximation; interpolation; spline;
D O I
10.3846/13926292.2013.807317
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a new method for constructing a polyspline on annuli, i.e. a C-2 surface on R-2 \ {0}, which is piecewise biharmonic on annuli centered at 0 and interpolates smooth data at all interface circles. A unique surface is obtained by imposing Beppo Levi conditions on the innermost and outermost annuli, and one additional restriction at 0: either prescribing an extra data value, or asking that the surface is non-singular. We show that the resulting Beppo Levi polysplines on annuli are in fact thin plate splines, i.e. they minimize Duchon's bending energy.
引用
收藏
页码:446 / 460
页数:15
相关论文
共 17 条
[1]  
[Anonymous], ANZIAM J
[2]  
[Anonymous], PREPRINT
[3]  
[Anonymous], THESIS KUWAIT U
[4]  
Arcangeli R., 2004, MULTIDIMENSIONAL MIN, DOI DOI 10.1007/B130045
[5]   Transfinite Thin Plate Spline Interpolation [J].
Bejancu, Aurelian .
CONSTRUCTIVE APPROXIMATION, 2011, 34 (02) :237-256
[7]  
Bottcher A., 1998, Introduction to Large Truncated Teoplitz Ma- trices
[8]  
DUCHON J, 1976, REV FR AUTOMAT INFOR, V10, P5
[9]  
Golub G. H., 1996, MATRIX COMPUTATIONS
[10]  
Jerome J., 1972, Journal of Approximation Theory, V5, P15, DOI 10.1016/0021-9045(72)90027-5