Coordination modulated crystallization and defect passivation in high quality perovskite film for efficient solar cells

被引:77
作者
Deng, Xiaoyu [1 ]
Cao, Zhiyuan [1 ]
Yuan, Yuan [1 ]
Chee, Mason Oliver Lam [2 ]
Xie, Lisha [1 ]
Wang, Aili [1 ]
Xiang, Yong [1 ]
Li, Tingshuai [1 ]
Dong, Pei [2 ]
Ding, Liming [3 ]
Hao, Feng [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mat & Energy, Chengdu 610054, Peoples R China
[2] George Mason Univ, Dept Mech Engn, Fairfax, VA 22030 USA
[3] Natl Ctr Nanosci & Technol, Ctr Excellence Nanosci CAS, Key Lab Nanosyst & Hierarch Fabricat CAS, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Additives; Solvents; Hysteresis; Crystallization; Defects; ORGANIC-INORGANIC PEROVSKITES; METHYLAMMONIUM LEAD IODIDE; LEWIS-BASE PASSIVATION; CH3NH3PBI3; PEROVSKITE; HALIDE PEROVSKITES; PHOTOVOLTAIC PERFORMANCE; CONVERSION EFFICIENCY; SEQUENTIAL DEPOSITION; ENHANCING EFFICIENCY; SURFACE PASSIVATION;
D O I
10.1016/j.ccr.2020.213408
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Hybrid perovskite solar cells (PSCs) have come into prominence as a potential alternative to crystalline silicon solar cells due to their outstanding photovoltaic performance and the simple manufacturing process. Over the past few years, the performance has greatly benefited from the emergence of advanced fabrication technologies capable of producing high quality perovskite films. The transforming process from precursor to perovskite film directly influences the film quality by controlling the nucleation and crystal growth. In particular, the coordination of electron-rich atoms in solvent or additives with Pb ions in perovskite precursor has been widely used to modulate the crystal growth to obtain compact and dense perovskite film with fewer defects. Here, a systematic review is presented to describe the effect of coordination interaction on perovskite crystallization process, defects passivation, hysteresis behavior and long-term stability for efficient perovskite thin film and related photovoltaics. Functional additives with carbonyl-, acyl- and cyano- group bearing lone electron pairs have been widely adopted to coordinate with PbI2 to retard crystallization and obtain a high-quality perovskite film. Meanwhile, these additives can modify the surface or grain boundary of as-formed perovskite film to passivate defects, mitigate hysteresis and prevent the moisture permeation to prolong the device lifetime. The coordination interaction provides a feasible strategy to improve the perovskite film quality, which is crucial to increase the efficiency and longevity of PSCs and other related optoelectronic devices towards future upscaling and commercialization. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:17
相关论文
共 162 条
[1]   Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide [J].
Ahn, Namyoung ;
Son, Dae-Yong ;
Jang, In-Hyuk ;
Kang, Seong Min ;
Choi, Mansoo ;
Park, Nam-Gyu .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (27) :8696-8699
[2]   Low-Temperature Annealed Perovskite Films: A Trade-Off between Fast and Retarded Crystallization via Solvent Engineering [J].
Arain, Zulqarnain ;
Liu, Cheng ;
Ren, Yingke ;
Yang, Yi ;
Mateen, Muhammad ;
Liu, Xuepeng ;
Ding, Yong ;
Ali, Zulfiqar ;
Liu, Xiaolong ;
Dai, Songyuan ;
Hayat, Tasawar ;
Alsaedi, Ahmed .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (18) :16704-16712
[3]   Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation [J].
Azpiroz, Jon M. ;
Mosconi, Edoardo ;
Bisquert, Juan ;
De Angelis, Filippo .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (07) :2118-2127
[4]  
Ball JM, 2016, NAT ENERGY, V1, P1, DOI [10.1038/nenergy.2016.149, 10.1038/NENERGY.2016.149]
[5]   Hybrid Organic-Inorganic Perovskites (HOIPs): Opportunities and Challenges [J].
Berry, Joseph ;
Buonassisi, Tonio ;
Egger, David A. ;
Hodes, Gary ;
Kronik, Leeor ;
Loo, Yueh-Lin ;
Lubomirsky, Igor ;
Marder, Seth R. ;
Mastai, Yitzhak ;
Miller, Joel S. ;
Mitzi, David B. ;
Paz, Yaron ;
Rappe, Andrew M. ;
Riess, Ilan ;
Rybtchinski, Boris ;
Stafsudd, Oscar ;
Stevanovic, Vladan ;
Toney, Michael F. ;
Zitoun, David ;
Kahn, Antoine ;
Ginley, David ;
Cahen, David .
ADVANCED MATERIALS, 2015, 27 (35) :5102-5112
[6]  
Bi DQ, 2016, NAT ENERGY, V1, DOI [10.1038/nenergy.2016.142, 10.1038/NENERGY.2016.142]
[7]   Efficient luminescent solar cells based on tailored mixed-cation perovskites [J].
Bi, Dongqin ;
Tress, Wolfgang ;
Dar, M. Ibrahim ;
Gao, Peng ;
Luo, Jingshan ;
Renevier, Clementine ;
Schenk, Kurt ;
Abate, Antonio ;
Giordano, Fabrizio ;
Baena, Juan-Pablo Correa ;
Decoppet, Jean-David ;
Zakeeruddin, Shaik Mohammed ;
Nazeeruddin, Mohammad Khaja ;
Gratzel, Michael ;
Hagfeldt, Anders .
SCIENCE ADVANCES, 2016, 2 (01)
[8]   Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J].
Burschka, Julian ;
Pellet, Norman ;
Moon, Soo-Jin ;
Humphry-Baker, Robin ;
Gao, Peng ;
Nazeeruddin, Mohammad K. ;
Graetzel, Michael .
NATURE, 2013, 499 (7458) :316-+
[9]   Efficient, Hysteresis-Free, and Stable Perovskite Solar Cells with ZnO as Electron-Transport Layer: Effect of Surface Passivation [J].
Cao, Jing ;
Wu, Binghui ;
Chen, Ruihao ;
Wu, Youyunqi ;
Hui, Yong ;
Mao, Bing-Wei ;
Zheng, Nanfeng .
ADVANCED MATERIALS, 2018, 30 (11)
[10]   Identifying the Molecular Structures of Intermediates for Optimizing the Fabrication of High-Quality Perovskite Films [J].
Cao, Jing ;
Jing, Xiaojing ;
Yan, Juanzhu ;
Hu, Chengyi ;
Chen, Ruihao ;
Yin, Jun ;
Li, Jing ;
Zheng, Nanfeng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (31) :9919-9926