Balancing numbers which are products of consecutive integers

被引:8
作者
Tengely, Szabolcs [1 ]
机构
[1] Univ Debrecen, Math Inst, H-4010 Debrecen, Hungary
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2013年 / 83卷 / 1-2期
关键词
Diophantine equations; RATIONAL-POINTS; DIOPHANTINE EQUATIONS; INTEGRAL SOLUTIONS; BOUNDS; FIBONACCI; CURVES;
D O I
10.5486/PMD.2013.5654
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1999 A. BEHERA and G. K. PANDA defined balancing numbers as follows. A positive integer n is called a balancing number if 1 + 2 + . . . + (n - 1) = (n + 1) (n + 2) . . . + (n + k) for some k is an element of N. The sequence of balancing numbers is denoted by B-m for m is an element of N. In this paper we show that the Diophantine equation B-m = x(x + 1)(x + 2)(x + 3)(x + 4) has no solution with m >= 0 and x is an element of Z. We follow the ideas described in [13], that is we combine Baker's method and the so-called Mordell-Weil sieve to obtain all solutions.
引用
收藏
页码:197 / 205
页数:9
相关论文
共 32 条
[1]   BOUNDS FOR SOLUTIONS OF HYPERELLIPTIC EQUATION [J].
BAKER, A .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1969, 65 :439-&
[2]   EQUATIONS 3X2-2=Y2 AND 8X2-7=Z2 [J].
BAKER, A ;
DAVENPOR.H .
QUARTERLY JOURNAL OF MATHEMATICS, 1969, 20 (78) :129-&
[3]  
Behera A, 1999, FIBONACCI QUART, V37, P98
[4]  
Bérczes A, 2010, FIBONACCI QUART, V48, P121
[5]   Solving superelliptic diophantine equations by Baker's method [J].
Bilu, YF ;
Hanrot, G .
COMPOSITIO MATHEMATICA, 1998, 112 (03) :273-312
[6]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[7]   ON S-INTEGRAL SOLUTIONS OF THE EQUATION YM=F(X) [J].
BRINDZA, B .
ACTA MATHEMATICA HUNGARICA, 1984, 44 (1-2) :133-139
[8]   Deciding existence of rational points on curves: An experiment [J].
Bruin, Nils ;
Stoll, Michael .
EXPERIMENTAL MATHEMATICS, 2008, 17 (02) :181-189
[9]   The Mordell-Weil sieve: proving non-existence of rational points on curves [J].
Bruin, Nils ;
Stoll, Michael .
LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2010, 13 :272-306
[10]   Bounds for the solutions of superelliptic equations [J].
Bugeaud, Y .
COMPOSITIO MATHEMATICA, 1997, 107 (02) :187-219