Existence and Multiplicity of Solutions for Impulsive Fractional Differential Equations

被引:11
作者
Nyamoradi, Nemat [1 ]
机构
[1] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
关键词
Fractional differential equations; impulsive; solutions; variational methods; BOUNDARY-VALUE-PROBLEMS; PREDATOR-PREY MODEL;
D O I
10.1007/s00009-016-0806-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of solutions for the following impulsive fractional boundary-value problem: {-d/dt (1/2 D-t(alpha-1) (D-c(0)t(alpha) u(t)) - 1/2(t) D-T(alpha-1)((c)(t) D-T(alpha) u(t))) = lambda u(t) + f(t, u(t)), t not equal t, a.e, t is an element of [0, T], Delta(1/2 D-t(alpha-1)(D-c(0)t(alpha) u(t(j))) - 1/2(t) D-T(alpha-1) ((c)(t) D-T(alpha) u(t(j))) = I-j (u(t(j))), j = 1,2, ..., n, u(0) = u (T) = 0, where alpha is an element of (1/2, 1], 0 = t(0) < t(1) < t(2) < center dot center dot center dot < t(n) < t(n+1) = T, lambda is a parameter and f : [ 0, T] x R -> R and I-j : R -> R, j = 1, ..., n are continuous functions and Delta(1/2D(t)(alpha-1) (D-c(0)t(alpha) u(t(j))) - 1/2t D-T(alpha-1)((c)(t) D(T)(alpha)u(t(j)))) =1/2D(t)(alpha-1) ((c)(0) D-t(alpha) u(t(j)(+))) - 1/2t D-T(alpha-1) ((c)(t)D(T)(alpha)u(t)), -1/2D(t)(alpha-1) ((c)(0) D-t(alpha) u(t(j)(-))) - 1/2t D-T(alpha-1) ((c)(t) D(T)(alpha)u(t(j)(+))) =(t -> t)lim(+j) (1/2 D-t(alpha-1) ((c)(0) D-t(alpha) u(t)) - 1/2(t)D(T)(alpha-1) ((c)(t) D(T)(alpha)u(t)), 1/2D(t)(alpha-1) ((c)(0) D(t)(alpha)u(t(j)(-))) - 1/2t D-T(alpha-1) ((c)(t) D(T)(alpha)u(t(j)(-))) =t -> t(j)(-) (1/2 D-t(alpha-1) ((c)(0) D(t)(alpha)u(t)) - 1/2tD(T)(alpha-1) ((c)(t) D(T)(alpha)u (t)). By using critical point theory and variational methods, we give some new criteria to guarantee that the impulsive problems have at least one solution and infinitely many solutions.
引用
收藏
页数:17
相关论文
共 25 条
[1]   EXISTENCE OF SOLUTIONS FOR IMPULSIVE ANTI-PERIODIC BOUNDARY VALUE PROBLEMS OF FRACTIONAL ORDER [J].
Ahmad, Bashir ;
Nieto, Juan J. .
TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (03) :981-993
[2]  
Anguraj A., 2010, FRACTIONAL CALCULUS, V13, P281
[3]  
[Anonymous], 2002, Appl. Anal. Vol.I
[4]  
[Anonymous], 1995, World Sci. Ser. Nonlinear Sci., Ser. A., DOI DOI 10.1142/2892
[5]  
[Anonymous], 2013, ELECT J DIFFER EQU
[6]  
[Anonymous], 1989, Series in Modern Applied Mathematics
[7]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[8]  
[Anonymous], 2006, Journal of the Electrochemical Society
[9]  
Bai C., 2012, ELECT J DIFFERENTIAL, V2012, P1
[10]   Existence of solutions to boundary value problem for impulsive fractional differential equations [J].
Bonanno, Gabriele ;
Rodriguez-Lopez, Rosana ;
Tersian, Stepan .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (03) :717-744